Характеристика сварочной дуги и зачем нужен сварочный осциллятор?

Принцип работы осциллятора для сварки

Характеристика сварочной дуги и зачем нужен сварочный осциллятор?

Когда требуется заварить трещину или собрать конструкцию из высоколегированной стали, используют покрытые электроды с соответствующим составом и источник постоянного тока. Хорошо поддается сварке нержавеющая сталь и вольфрамовым электродом. Для соединения деталей из алюминия используют те же средства, только на переменном токе.

Но в каждом случае возникает сложность — розжиг дуги. Такие металлы покрыты оксидной пленкой, мешающей установлению контакта между поверхностью и электродом. Для решения этой проблемы в схему оборудования добавляют осциллятор. Он способствует быстрому возбуждению сварочной дуги и поддерживает ее горение.

Что такое осциллятор в деталях? Какие встречаются разновидности таких аппаратов, и по какому принципу они работают?

Что это такое

Осциллятор для сварки — это генератор, используемый для выработки тока высокой частоты, который связывает конец электрода и свариваемую поверхность без физического контакта. Устанавливается такое оборудование между сварочным аппаратом и держателем. Существуют отдельные устройства и входящие в корпус самого сварочника. Подобные аппараты могут работать по двум схемам:

  • Создавать кратковременный импульс, способствующий возбуждению дуги, не прикасаясь к изделию. Визуально, это выглядит как небольшая «молния», посылаемая с конца электрода на свариваемую поверхность. При достижении последней, и наличии предварительно подсоединенной массы на изделие, устанавливается контакт и становится возможно ведение шва. Сам импульс после розжига дуги затухает.
  • Поддерживать постоянное напряжение с высоким показателем V, которое накладывается на сварочный ток. Это позволяет одновременно вести сварку и сохранять стабильность горения дуги.

Применение осцилляторов

Осцилляторы для сварки, благодаря своим свойствам, широко используются в оборудовании для работы с цветными металлами. Когда требуется наложить шов на нержавейку, алюминий, или медь, то применение осциллятора позволяет быстро возбудить дугу и начать сварку, вместо утомительного постукивания и чирканья об изделие электродом.

Использовать это устройство удобно и для точного начала ведения шва. Сварщик устанавливает конец вольфрамовой иглы на ближний край соединения, опускает маску, и нажатием кнопки возбуждает дугу. Это значительно снижает последующую обработку изделия от следов касания электрода. Внедряют их и на аппараты по плазменной резке, позволяющие быстро приступить к процессу разделывания материала.

Осциллятор сварочный применяется еще и для работы с тонкими листами металлов. Как правило, ток инвертора в таких случаях выставляется на низких значениях, и малейшее удаление конца электрода из сварочной ванны ведет к прерыванию дуги. Внедрение в схему осциллятора позволяет стабилизировать электросварку в работе на малых токах.

Устройство осциллятора

Подобные аппараты интегрируются в цепь оборудования всегда между трансформатором или выпрямителем и сварочным держателем для электродов. Вследствие чего обеспечивается установление контакта и стабилизация работы. Большинство осцилляторов имеют похожее строение и включают в себя следующие узлы:

  • выпрямитель напряжения;
  • блок накопителя заряда из конденсаторов;
  • источник питания;
  • узел для формирования импульса, с колебательным контуром и разрядником;
  • блок управления;
  • газовый клапан (в аргоновых установках);
  • повышающий трансформатор;
  • датчик напряжения.

Принцип работы

Главная задача устройства для генерирования импульса — модернизировать входящее напряжение, повысив его частоту и показатель V, и уменьшив его длительность до интервала менее секунды. Работает эта схема следующим образом:

  1. На горелке нажимается кнопка и запускается электрическая цепь.
  2. Выпрямитель на входе выравнивает ток и делает его однонаправленным.
  3. Конденсаторы накапливают в себе напряжение для разряда.
  4. При высвобождении тока он поступает на колебательный контур, состоящий из обмоток трансформатора. Там же повышается значение V.
  5. Схема управления руководит высвобождением импульса.
  6. Параллельно с этим открывается газовый клапан.
  7. Импульс производит разряд, связывающий по воздуху конец электрода и изделие. Для этого на последнее должен быть подсоединен кабель массы.
  8. После прохождения по цепи сварочного тока, высокочастотный импульс прекращается. Шов ведется на установленных ранее настойках сварочного аппарата.
  9. Когда горение дуги окончено, осциллятор обеспечивает продувку аргоном горелки еще в течение 4 секунд. Это остужает вольфрамовый электрод и последний участок шва.

Разновидности

Осциллятор может применять по-разному, в зависимости от его типа и вида выполняемых сварочных работ. Общими параметрами всех устройств является преобразование тока до 3000-5000 В, и повышение частоты колебания до 150-500 кГц. Различие же заключается во временном показателе высокочастотного тока.

Модели с непрерывным действием применяются для поддержания и стабилизации сварочной дуги. Их подключение должно быть последовательным, чтобы защитить сварщика от высокого напряжения, которое постоянно присутствует в цепи.

Такие осцилляторы накладывают высокочастотный ток поверх сварочного, что помогает производить беспрепятственный розжиг и вести сварку на малых токах.

Чаще всего эти модели устанавливают на инверторы или трансформаторы для работы с покрытыми электродами.

Второй тип осцилляторов применяется лишь для бесконтактного поджига дуги. Обычно это используется в аргоновых аппаратах. Вольфрамовый электрод быстро затупляется при чирке об изделие.

Это сказывается на качестве шва, который становится толще, и на свойствах дуги, чье действие рассеивается. Постоянная заточка конца иглы тормозит рабочий процесс.

Внедрение в схему осциллятора с кратковременным импульсом позволяет возбуждать дугу без непосредственного контакта с поверхностью. Количество заточек электрода зависит лишь от аккуратности сварщика во время ведения шва.

Использование осцилляторов значительно оптимизирует сварочный процесс и экономит дорогостоящие расходные материалы. Выбрав аппарат в зависимости от типа намеченных работ, можно облегчить ее выполнение и повысить качество.

Поделись с друзьями

1

Источник: https://svarkalegko.com/oborudovanie/oscillyator.html

Сварочный осциллятор — устройство и изготовление своими руками

Чтобы облегчить задачу выполнения сварочных работ с деталями из цветных металлов и нержавеющей стали, необходимо использовать сварочный осциллятор. Это полезное приспособление, решающее задачи поджога сварочной дуги и ее поддержания в стабильном состоянии, одинаково успешно может использоваться и в производстве, и в быту.

Сварочный осциллятор марки ВСД-02, используемый для стабилизации горения дуги

Разбираемся в конструкции и принципе действия осциллятора

Сварочные осцилляторы, способные работать с источниками переменного и постоянного тока, необходимы для того, чтобы одновременно повысить как величину напряжения, так и частоту электрического тока.

Если на входе такого устройства напряжение составляет 220 В, а частота тока – 50 Гц, то на выходе уже получается 2500–3000 В и 150000–300000 Гц. Продолжительность импульсов, которые создает осциллятор, составляет десятки микросекунд.

Мощность этих устройств, с помощью которых в сварочную цепь поступает ток высокой частоты и с большим значением напряжения, – 250–350 Вт.

Технические возможности, которыми обладает осциллятор, обеспечиваются его конструкцией и характеристиками его элементов.

Электрическую схему аппарата составляют следующие компоненты:

  • колебательный контур, выступающий в роли искрового генератора затухающих колебаний (в состав такого контура входят конденсатор и катушка индуктивности – подвижная обмотка высокочастотного трансформатора);
  • разрядник;
  • дроссельные катушки в количестве двух штук;
  • повышающий трансформатор;
  • трансформатор высокой частоты.

Функциональная схема осциллятора

Кроме того, осциллятор содержит элементы, обеспечивающие безопасность как самого устройства, так и сварщика. К таким элементам относятся конденсатор, защищающий сварщика от удара электрическим током, и предохранитель, размыкающий электрическую цепь при пробое конденсатора.

Осциллятор, который используется в паре со сварочным аппаратом, работает по следующему принципу. После прохождения по обмоткам повышающего трансформатора напряжение поступает на конденсатор колебательного контура и начинает заряжать его.

Когда конденсатор заряжается до величины, предусмотренной его емкостью, он выдает разряд на разрядник, что приводит к пробою. После этого колебательный контур оказывается закороченным, что и вызывает возникновение резонансных затухающих колебаний.

Высокочастотный ток, формирующий эти колебания, через блокировочный конденсатор и обмотку катушки поступает на сварочную дугу.

Пример изготовления платы осциллятора

Блокировочный конденсатор устроен таким образом, что через него может свободно проходить только ток высокой частоты, отличающийся и большим значением напряжения.

Низкочастотный ток через такой конденсатор проходить не способен из-за слишком большого сопротивления.

Благодаря данной характеристике блокировочного конденсатора через него не может пройти и низкочастотный ток от сварочного аппарата, что защищает осциллятор от короткого замыкания.

Виды сварочных осцилляторов

Осциллятор, который при желании нетрудно сделать и своими руками, может относится к:

  • устройствам непрерывного действия;
  • аппаратам с импульсным питанием.

При помощи осцилляторов первого типа к сварочному току добавляется ток высокой частоты (150–250 кГц) и с большим значением напряжения (3000–6000 В).

Зажигание такой дуги может осуществляться даже без прикосновения электрода к поверхности соединяемых заготовок, а горит дуга очень устойчиво даже при небольших значениях тока, поступающего от сварочного аппарата.

Это возможно благодаря высокой частоте тока, который выдает осциллятор. Что важно, ток с такими характеристиками не опасен для сварщика, выполняющего работу с использованием этого устройства.

Параллельное и последовательное подключение осциллятора

Электрическая схема, в которой задействован осциллятор первого типа, может предусматривать его параллельное или последовательное подключение. Большей эффективностью отличаются устройства, которые подключены к электрической цепи сварочного аппарата последовательно. Объясняется это тем, что в их схеме не применяют за ненадобностью защиту от высокого напряжения.

Сварочный осциллятор с импульсным питанием требуется преимущественно при сварке, которая выполняется на переменном токе.

Кроме первоначального зажигания сварочной дуги, устройство такого типа обеспечивает ее поддержку при смене полярности переменного тока, которая происходит постоянно.

Осцилляторы первого типа в условиях постоянной смены полярности переменного тока плохо справляются с повторным зажиганием дуги, что негативно сказывается на качестве выполнения сварочных операций.

К бесконтактному зажиганию сварочной дуги также способны осцилляторы, в электрической схеме которых имеются конденсаторы, накапливающие заряд от специального зарядного устройства.

В те моменты, когда необходимо выполнить повторное зажигание дуги, эти конденсаторы разряжаются, и электрический ток их разряда подается в дуговой промежуток.

Электрическая схема такого сварочного осциллятора содержит в себе устройство, которое обеспечивает синхронизацию разрядов конденсатора в те моменты, когда электрический ток дуги проходит через ноль.

Правила эксплуатации осцилляторов

Применение осциллятора для сварки алюминия, других цветных металлов или нержавеющей стали требует соблюдения ряда несложных правил, которые сделают работу с таким устройством комфортной и безопасной.

  • Использовать осцилляторы можно как в помещениях, так и вне их.
  • Не рекомендуется применение сварочных осцилляторов на открытом воздухе, если на улице идет дождь или снег.
  • Работать с такими устройствами разрешается при температуре окружающего воздуха от –10 до +40 градусов Цельсия.
  • Использовать осцилляторы допустимо при уровне влажности окружающего воздуха, не превышающей 98%.
  • Атмосферное давление, при котором можно использовать такие устройства, должно находиться в интервале 85–106 килопаскалей.
  • Не рекомендуется использовать такое устройство в помещениях, атмосфера которых сильно загрязнена пылью, едкими парами и газами, которые могут разрушить изоляцию и металл.
  • Начинать работу со сварочным осциллятором можно лишь в том случае, если он надежно заземлен.
  • Перед началом работы всегда следует проверять, правильно ли устройство подключено в сварочную цепь и исправны ли его контакты.
  • Кожух осциллятора в процессе выполнения сварочных работ всегда должен быть надет на него, снимать его можно только тогда, когда устройство отключено от электрической сети.
  • Рабочая поверхность разрядника должна всегда содержаться в чистоте, на ней не должно быть следов нагара. В случае появления нагара от него необходимо избавиться с помощью шлифовальной шкурки.
Читайте также:  Как выбрать сварочную маску - основные рекомендации

Как своими руками сделать осцилляторное устройство

Как уже говорилось выше, осцилляторы позволяют зажигать сварочную дугу без касания электродом поверхности соединяемых деталей, а также поддерживать ее стабильность в процессе горения.

Обеспечивается такая функциональность данного устройства за счет того, что на электрический ток, поступающий от сварочного аппарата, накладывается ток, обладающий высокой частотой и большим значением напряжения.

Используется такое приспособление, которое можно сделать и своими руками, преимущественно для сварки деталей из алюминия.

Для изготовления самодельного сварочного осциллятора можно воспользоваться наиболее простой и распространенной схемой.

Основным элементом схемы такого устройства является трансформатор, который обеспечивает увеличение значения напряжения со стандартных 220 до 3000 В.

Основную трудность при изготовлении осциллятора своими руками представляет разрядник, через который и проходит мощная электрическая искра.

Самодельный одноискровый разрядник

Важнейшим элементом схемы сварочного осциллятора выступает колебательный контур, в котором обязательно должен присутствовать блокировочный конденсатор.

Такой контур, в состав которого входят также разрядник и катушка индуктивности, решает основную задачу осциллятора – генерирование затухающих высокочастотных импульсов, облегчающих зажигание сварочной дуги и ее поддержание в стабильном состоянии.

Как серийный, так и сделанный своими руками, такой аппарат может быть выполнен по двум основным схемам: непрерывного и импульсного действия.

Осцилляторы, работающие по схеме непрерывного действия, считаются менее эффективными, в их конструкции необходимо использовать устройства, защищающие их от повышенного напряжения.

Более эффективными являются импульсные осцилляторы, которые обеспечивают быстрое зажигание сварочной дуги и ее стабильное горение при работе на переменном токе.

Принципиальная схема сварочного аппарата с осциллятором

Основным элементом управления осциллятором является кнопка, которая одновременно включает разрядник и отвечает за подачу защитного газа в область выполнения сварочных работ.

Сами высокочастотные импульсы, обеспечивающие эффективное выполнение сварочных работ, вырабатывают разрядник и высоковольтный трансформатор. Выходными элементами такого устройства являются два контакта – плюсовой и минусовой.

Первый, подающийся от высоковольтного трансформатора, подключается к горелке сварочного аппарата, второй – к свариваемым деталям.

Для того чтобы своими руками изготовить такое устройство, значительно упрощающее процесс сварки деталей из цветных металлов и нержавеющей стали, достаточно обладать элементарными знаниями электротехники и навыками сборки электрических устройств.

Конечно, можно приобрести такое устройство в магазине или на строительном рынке, но это обойдется вам недешево. Если использовать его вы собираетесь не постоянно, а время от времени, то есть смысл изготовить его своими руками.

Источник: http://met-all.org/oborudovanie/svarochnye/svarochnyj-oscillyator-svoimi-rukami.html

Электрическая сварочная дуга – Осварке.Нет

Сварочная дуга — длительный разряд электрического тока, горящий между сварочным электродом и сварочной конструкцией в ионизированной среде газов и паров металлов.

Виды сварочной дуги

Различают следующие виды дуги:

  • прямого действия — дуга горящая между металлическим сварочным электродом и сварной конструкцией;
  • непрямого действия — горение дуги происходит между двумя электродами, а основной металл не включается в электрическую цепь;
  • трехфазная дуга — подведено по одной фазе на два сварочных электрода, а третья к сварочной конструкции;
  • плазменная дуга — дуга сжатая газами.

Обязательным условием горения дуги является наличие заряженных частичек (электронов и ионов) в промежутке газов между электродом и металлом. При обычной среде газы не проводят электрический ток.

Для того чтобы зажечь дугу необходимо замкнуть электрод касанием об изделие, после чего выделяется значительный потенциал тепла, который ускоряет движение свободных электронов в цепи. Когда конец электрода отрывается, находясь под воздействием электрического поля вылетают в межэлектродное пространство.

Самостоятельный выход электронов с катода в газовое пространство называется электронной эмиссией. Источник питания сварной дуги постоянно поставляет новые электроны и дуга горит постоянно. Техника зажигания дуги при ручной дуговой сварке описана здесь.

Современное сварочное оборудование позволяет выполнять зажигание дуги бесконтактным методом — не касаясь электродом об изделие. Выполняется это при помощи использования генератора высокочастотных колебаний — осциллятора.

Строение сварочной дуги: катодное пятно, столб дуги, анодное пятно

Катодное пятно является источником и местом выхода электронов. Этот участок электрической дуги разогревается до температуры 2400-2600°C при использовании покрытых электродов, а количество тепла выделенного тепла на этом участке равняется 38% от общего. На этом участке дуги теряется 12-17 В напряжения  сосредоточенных на разгон электродов и их эмиссию.

Столб дуги в отличии от катодного и анодного пятна является нейтральным участком дуги, где одновременно находится одинаковое количество позитивно и негативного заряженных частиц. Столб дуги выделяет приблизительно 20% об общего количества тепла. Потеря напряжения на этом участке сварочной дуги зависит от ее длины и становит 2-12 В. Температура столба дуги самая высокая 6000-8000°C.

Анодное пятно — место входа электродов в сварочную цепь с дуги. Температура 2400-2600°C, а количество выделяемого тепла 42% от общего. Спад напряжения 2-11 В. Анодное пятно под воздействием постоянной бомбардировки имеет вогнутую форму, которую называют кратером.

При сварке на постоянном токе различают прямую и обратную полярность. Меняют полярность в зависимости от вида свариваемого материала.

Если требуется больший нагрев металла и глубина проплавления необходимо установить анод на изделие, где будет выделяться больше тепла — прямая полярность.

При сварке на обратной полярности анод и катод меняются местами, поэтому на изделии выделяется меньше тепла.

Для сварки дугой переменного тока характерно менять полярность с частотой 50 Гц, поэтому на электроде и изделии выделяется одинаковое количество тепла. При сварке на переменном токе дуга горит менее стойко и усиливается разбрызгивание электродного металла.

Источник: http://osvarke.net/duga/svarochnaya-duga/

Сварочный осциллятор своими руками

Осциллятор — это сварочный агрегат, он позволяет упростить процесс соединения нержавейки и других цветных металлов. Он способен не сталкивать специалиста с проблемой поджога дуги и будет держать её в надёжном состоянии. Устройство проявляет себя достойно как в бытовой среде, так и на более профессиональном уровне.

Вопрос о сборке осциллятора своими руками стал очень популярным, ведь цена за самый простой агрегат может доходить до 7500 рублей. Но если он требуется только для решения мелких бытовых задач, стоит ли тратить на это деньги? Поэтому речь пойдёт о сборке устройства своими силами, тем самым, это поможет подкопить определённый опыт, подтянуть знания и сэкономить денежные средства.

Схема и принцип работы

Осциллятор позволяет работать с переменным и постоянным источником напряжения. Частота при стандартном токе в 220 В, равна 50 Гц. При выходе, характеристики изменятся до 145000-300000 Гц и 3000 В.

Частотность импульсов создаваемых агрегатом, равны десяткам миллисекунд. Его мощность, при которой ток попадает в цепь для сварки на высокой частоте с большими значениями напряжения, доходит до 350 В.

Схема сварочного осциллятора при самостоятельной сборке будет предполагать наличие таких компонентов:

  1. Трансформатор (повышающий);
  2. Трансформатор высокочастотник;
  3. Разрядник;
  4. Пара катушек (дроссельных);
  5. Как генератор колебаний, применяется контур (колебательный). У него есть двигающееся обмотка трансформатора высоких частот и конденсатор.

Порядок действий при сборке аппарата

Приведём схему для осциллятора, позволяющую провести сварку алюминия и других металлов. Этот способ является самым популярным при самостоятельной сборке устройства:

  • сначала происходит подбор генератора, который сможет работать с увеличенной подачей напряжения до 3000 В;
  • для пропуска искры, устанавливается разрядник;
  • далее монтируется колебательный контур с конденсатором для корректировки импульсов высоких частот.

Полезные советы

Если собран осциллятор непрерывного типа, вход подключается к параллели сварочной цепи (где точки присоединения, это держак и «масса»).

Запитывается аппарат исключительно через Тр. Подключать его в сеть напрямую не советуют, так как если трансформатор отключается, генераторная схема останется под напряжением.

Тиристоры подбираются, опираясь на устойчивость сварочной дуги.

Собрать сварочный осциллятор своими руками оказывается не так сложно, как говорят, теперь он готов. Основополагающей деталью в конструкции будет выступать колебательный контур.

Он предполагает наличие конденсатора и блокировки, это обязательно. Ещё он должен иметь катушку и разрядник, они нужны для генерации импульса.

Такая схема осциллятора, позволит упростить процесс работы с поджогом дуги для сварки.

Как работать со сварочным осциллятором?

Перед точкой отправления проведения работ, сварщика должен побеспокоить вопрос об установке высоковольтного трансформатора и кнопки на горелку. Она нужна для поставки газа на сопло дуги и управления отжигом. Это позволит образовать аргоновую среду и обеспечит защиту металла от влияния кислорода. Далее приступаем непосредственно к сварке.

Чтобы разрядник загорелся, нажимаем кнопку управления. Теперь мы видим, что он готов к созданию частот импульса. К этому процессу, непосредственное отношение имеет высоковольтный трансформатор. Через дугу будет создано высокомагнитное поле, которое преобразуется при помощи катушки.

Читайте также:  Пайка оптического волокна: детали и тонкости выполнения.

Перед тем как собрать осциллятор для сварки своими руками, нужно иметь хотя бы знания базового уровня, опыт в конструировании и уметь разбираться в элементарных чертежах для сборки устройства. В процессе изготовления агрегата, не стоит забывать о правилах безопасности, так как работать приходится с электричеством, при халатном отношении увеличивается вероятность быть пораженном током.

Правила безопасности сварочного осциллятора

При эксплуатации осциллятора для дуговой сварки алюминия, а также нержавейки и прочих цветных металлов, стоит придерживаться нескольких простых правил. Что обеспечит надёжность и безопасность сварочных работ.

  1. Начинать работу разрешается только тогда, когда аппарат надёжно заземлён;
  2. Минимальная температура для работ -10, максимум +40;
  3. Влажность воздуха в здании не допускается выше уровня в 98%;
  4. Поверхность для работы разрядника, всегда должна быть чистой, без следов нагара. Чтобы его очистить, используют шлифовальную штукатурку;
  5. Атмосферное давление, которое позволяет комфортно работать с агрегатом, равно 85-110 единицам килопаскалей;
  6. Работать можно как на открытой местности, так и внутри здания;
  7. Перед тем, как начать работу, обязательно проверяется правильность подключения устройства в сварочную цепь и всё ли в порядке с его контактами;
  8. Когда работы начаты, кожух должен быть одет на аппарат. Снимать его можно только в случае, когда осциллятор выключен из сети;
  9. Если на улице плохая погода, идёт снег или дождь, то сварочные работы стоит отложить до тех пор, пока ситуация наладится;
  10. Также не рекомендуется использовать прибор, если помещение перенасыщено пылью, газами или едкими парами. Они могут пагубно повлиять на металл и изоляцию.

Вывод

Если требуется самостоятельное изготовление такого прибора, первое чего стоит придерживаться это правила по технике безопасности.

Во-вторых, не стоит браться за работу, не имея малейшего опыта в сварке, проектировке и сборке сварочных устройств.

Если базовые знания присутствуют, то сборка осциллятора для алюминиевых деталей не станет непреодолимой преградой для каждого.

Сергей Одинцов

Источник: http://electrod.biz/oborudovanie/svarochnyiy-ostsillyator.html

Устройство осциллятора для сварочных работ

При работе с аппаратами электродуговой сварки возбуждение электрической дуги осуществляется соприкосновением электрода и заготовки. Не всегда зажечь дугу удается с первого касания.

Иногда для возбуждения дуги касание приходится заменять неоднократным постукиванием, чтобы пробить непроводящий слой окисла на поверхности заготовки.

Выполнение тонких сварочных работ с цветными металлами производится на малых токах, усугубляющих нестабильность зажигания дуги. Для решения проблем подобного рода используется так называемый осциллятор. Его используют при сварке в среде аргона, которая как раз и применяется к цветным металлам и сплавам.

Принцип работы

Осциллятор предназначен для бесконтактного розжига сварочной электрической дуги и поддержания ее стабильности в процессе дальнейшей работы. Прибор является дополнением к используемому аппарату электродуговой сварки, и может располагаться в одном корпусе с ним. Можно сделать осциллятор для сварки своими руками, и подключить его отдельно, улучая условия работы.

Основная идея применения осциллятора заключается в следующем. На электрод обычного сварочного аппарата поверх номинального напряжения сварки накладываются импульсы повышенного напряжения и частоты.

Амплитуда импульсов достигает 3000 – 6000 Вольт, частота – от 150 до 500 кГц. Эти высокочастотные импульсы имеют очень малую длительность, мощность сигнала составляет 200 – 300 Ватт.

Такая мощность импульсов слишком мала, чтобы они могли служить генератором сварочного тока, их роль заключается в кратковременном электрическом пробое воздушного промежутка.

Работает осциллятор следующим образом. Сварщик приближает кончик электрода к свариваемой заготовке на расстояние около 5 мм.

Нажимает кнопку, которая обычно располагается в удобном месте держателя электрода (или горелки, как называют держатель электрода в аргонодуговых аппаратах), запуская осциллятор.

Электрические импульсы высокой частоты напряжением несколько киловольт мгновенно ионизируют воздушный промежуток, который при этом пробивается тонким разрядом. Поскольку ионизированный воздух становится электропроводящим, по нему начинает протекать сварочный ток основного аппарата, то есть, загорается полноценная сварочная дуга.

Далее в процессе работы импульсы, генерируемые осциллятором, поддерживают горение основной сварочной дуги в моменты, когда возникают предпосылки для ее гашения.

Например, ошибочное движение руки сварщика, случайно увеличившее воздушный промежуток, не приводит к немедленному гашению дуги, и процесс может продолжаться.

Устройство

Таким образом, применение осциллятора для сварки позволяет повысить стабильность работы сварочного аппарата и качество выполняемой работы за счет обеспечения следующих возможностей:

  • дистанционный розжиг электрической дуги;
  • сохранение устойчивости дуги при случайном изменении величины воздушного зазора.

Основными элементами осциллятора являются: трансформатор, обеспечивающий повышение сетевого напряжения 220 Вольт до 3 – 6 кВ, колебательный контур, генерирующий колебания высокой частоты, а также искровой промежуток.

Подключение

Схема подключения осциллятора к основному сварочному аппарату зависит от конструкции прибора. Прежде всего, осциллятор должен быть подключен к питанию 220 Вольт.

Подключение к сварочному аппарату может быть двух типов: параллельное и последовательное. На рисунке ниже представлены варианты подключения осциллятора, а также пример компоновки прибора, выполненного в виде отдельного блока.

При параллельном подключении, выводы осциллятора присоединяются к сварочному электроду и заготовке. При последовательном варианте, осциллятор включается в разрез кабеля, питающего сварочный электрод.

Можно найти большое количество схем и описаний этого полезного прибора, пользуясь которыми, его несложно сделать своими руками. Устройство не содержит дорогих и дефицитных деталей и доступно для исполнения человеку с начальными познаниями в электротехнике.

Применение

Основное применение данного прибора, как уже было сказано выше, относится к сварке цветных металлов, хотя и не ограничивается этой сферой. Описываемое устройство с успехом может применяться в сочетании со сварочными аппаратами любого типа.

Использование осциллятора с трансформатором для сварки переменным током, позволяет устранить недостатки этого вида сварки, порождающие нестабильное горение дуги.

Более того, в этом варианте становится возможным кроме штатных электродов, использовать при сварке электроды, предназначенные для работы с постоянным током.

Это расширяет технические возможности сварочных трансформаторов переменного тока и позволяет с их помощью выполнять сварочные соединения, по качеству не уступающие тем, которые выполнены сваркой на постоянном токе.

Осциллятор, предназначенный для сварки алюминия, часто сочетается с аппаратом аргонодуговой сварки. Алюминий является одним из самых «капризных» цветных металлов, не прощающих сварщику малейшей ошибки.

Он склонен к разбрызгиванию и быстрому сквозному прогару благодаря низкой температуре плавления. По этой причине, именно для работы с этим металлом актуально применение технологий, позволяющих работать малыми токами с высокой стабильностью сварочной дуги.

Примеры схем

Если есть желание сделать осциллятор самостоятельно, то стоит обратить внимание на самые простые схемы.

На приведенной ниже схеме представлен аппарат непрерывного действия, поэтому подключение к сети осуществляется исключительно через трансформатор. Чтобы собрать данную схему, не придётся использовать дорогостоящие элементы.

Недостатком является выбор тиристоров. Их надо подбирать, что называется, методом «тыка», пробовать, при каких тиристорах сварочная дуга наиболее устойчива.

Вторая схема самодельного осциллятора для сварки так же достаточно проста и лишена недостатков предыдущей. Собрать по ней устройство можно с минимальными навыками в монтаже электросхем.

На третьей схеме более подробно представлены элементы сборки.

При сборке надо помнить о технике безопасности, поскольку устройство работает с большими токами.

Источник: https://svaring.com/welding/prinadlezhnosti/oscilljator-dlja-svarki

Осцилляторы и импульсные возбудители дуги

Осциллятор — это устройство, преобразующее ток промышленной частоты низкого напряжения в ток высокой частоты (150—500 тыс. Гц) и высокого напряжения (2000—6000 В), наложение которого на сварочную цепь облегчает возбуждение и стабилизирует дугу при сварке.

Основное применение осцилляторы нашли при аргно-дуговой сварке переменным током неплавящимся электродом металлов малой толщины и при сварке электродами с низкими ионизирующими свойствами покрытия. Принципиальная электрическая схема осциллятора ОСПЗ-2М показана на рис. 1.

Осциллятор состоит из колебательного контура (конденсатора С5, в качестве индукционной катушки используется подвижная обмотка трансформатора ВЧТ и разрядника Р) и двух индуктивных дроссельных катушек Др1 и Др2, повышающего трансформатора ПТ, высокочастотного трансформатора ВЧТ.

Колебательный контур генерирует ток высокой частоты и связан со сварочной цепью индуктивно через высокочастотный трансформатор, выводы вторичных обмоток которого присоединяются: один к заземленному зажиму выводной панели, другой — через конденсатор С6 и предохранитель Пр2 ко второму зажиму.

Для защиты сварщика от поражения электрическим током в цепь включен конденсатор С6, сопротивление которого препятствует прохождению тока высокого напряжения и низкой частоты в сварочную цепь. На случай пробоя конденсатора С6 в цепь включен плавкий предохранитель Пр2.

Осциллятор ОСПЗ-2М рассчитан на подключение непосредственно в двухфазную или однофазную сеть напряжением 220 В.

Рис. 1. Принципиальная электрическая схема осициллятора ОСПЗ-2М: СТ — сварочный трансформатор, Пр1, Пр2 — предохранители, Др1, Др2 — дроссели, С1 — С6 — конденсаторы, ПТ — повышающий трансформатор, ВЧТ — высокочастотный трансформатор, Р – разрядник  Рис. 2. Схема включения осциллятора М-3 и ОС-1 в сварочную цепь: Тр1 — трансформатор сварочный, Др — дроссель, Тр2 — повышающий трансформатор осциллятора, Р — разрядник, С1 — конденсатор контура, С2 — защитный конденсатор контура, L1 — катушка самоиндукции, L2 — катушка связи 

При нормальной работе осциллятор равномерно потрескивает, и за счет высокого напряжения происходит пробой зазора искрового разрядника. Величина искрового зазора должна быть 1,5—2 мм, которая регулируется сжатием электродов регулировочным винтом. Напряжение на элементах схемы осциллятора достигает нескольких тысяч вольт, поэтому регулирование необходимо выполнять при отключенном осцилляторе.

Осциллятор необходимо зарегистрировать в местных органах инспекции электросвязи; при эксплуатации следить за его правильным присоединением к силовой и сварочной цепи, а также за исправным состоянием контактов; работать при надетом кожухе; кожух снимать только при осмотре или ремонте и при отсоединенной сети; следить за исправным состоянием рабочих поверхностей разрядника, а при появлении нагара — зачистить их наждачной бумагой. Осцилляторы, у которых первичное напряжение 65 В, подключать к вторичным зажимам сварочных трансформаторов типа ТС, СТН, ТСД, СТАН не рекомендуется, так как в этом случае напряжение в цепи при сварке понижается. Для питания осциллятора нужно применять силовой трансформатор, имеющий вторичное напряжение 65—70 В.

Читайте также:  Паяльная канифоль - свойства, применение, особенности

Схема подключения осцилляторов М-3 и ОС-1 к сварочному трансформатору типа СТЭ показана на рис.2. Технические характеристики осцилляторов приведен в таблице.

Технические характеристики осцилляторов

Тип Первичноенапряжение, В Вторичное напряжениехолостого хода, В Потребляемаямощность, Вт Габаритныеразмеры, мм Масса, кг
М-3 ОС-1 ОСЦН ТУ-2 ТУ-7ТУ-177 ОСПЗ-2М 40 — 65 65 200 65; 220 65; 220 65; 220220 2500 2500 2300 3700 1500 25006000 150 130 400 225 1000 40044 350 x 240 x 290 315 x 215 x 260 390 x 270 x 310 390 x 270 x 350 390 x 270 x 350 390 x 270 x 350250 х 170 х 110 15 15 35 20 25 206,5

Импульсные возбудители дуги

Это такие устройства, которые служат для подачи синхронизированных импульсов повышенного напряжения на сварочную дугу переменного тока в момент изменения полярности. Благодаря этому значительно облегчается повторное зажигание дуги, что позволяет снизить напряжение холостого хода трансформатора до 40—50 В.

Импульсные возбудители применяют только для дуговой сварки в среде защитных газов неплавящимся электродом. Возбудители с высокой стороны подключаются параллельно к сети питания трансформатора (380 В), а на выходе — параллельно дуге.

Мощные возбудители последовательного включения применяют для сварки под флюсом.

Импульсные возбудители дуги более устойчивы в работе, чем осцилляторы, они не создают радиопомех, но из-за недостаточного напряжения (200—300 В) не обеспечивают зажигания дуги без соприкосновения электрода с изделием. Возможны также случаи комбинированного применения осциллятора для начального зажигания дуги и импульсного возбудителя для поддержания ее последующего стабильного горения.

Стабилизатор сварочной дуги

Для повышения производительности ручной дуговой сварки и экономичного использования электроэнергии создан стабилизатор сварочной дуги СД-2. Стабилизатор поддерживает устойчивое горение сварочной дуги при сварке переменным током плавящимся электродом путем подачи на дугу в начале каждого периода импульса напряжения.

Стабилизатор расширяет технологические возможности сварочного трансформатора и позволяет выполнять сварку на переменном токе электродами УОНИ, ручную дуговую сварку неплавящимся электродом изделий из легированных сталей и алюминиевых сплавов.

Схема внешних электрических соединений стабилизатора показана на рис. 3, а, осциллограмма стабилизирующего импульса — на рис. 3, б.

Сварка c применением стабилизатора позволяет экономичнее использовать электроэнергию, расширить технологические возможности применения сварочного трансформатора, уменьшить эксплуатационные расходы, ликвидировать магнитное дутье.

Сварочное устройство «Разряд-250». Это устройство разработано   на   базе   сварочного   трансформатора   ТСМ-250   и стабилизатора сварочной дуги, выдающего импульсы частотой 100 Гц.

Функциональная схема сварочного устройства и осциллограмма напряжения холостого хода на выходе устройства показаны на рис. 4, а, б.

Рис. 3. Схема внешних электрических соединений стабилизатора и осциллограмма стабилизирующего импульса: а — схема: 1 — стабилизатор, 2 — трансформатор варочный, 3 — электрод, 4 — изделие; б — осцилограмма: 1 — стабилизирующий импульс, 2 — напряжение на вторичной обмотке трансформатора  Рис. 4. Сварочное устройство «Разряд-250»: а — схема устройства; б — осциллограмма напряжения холостого хода на выходе устройства 

Устройство «Разряд-250» предназначено для ручной дуговой сварки переменным током плавящимися электродами любого типа, в том числе предназначенными для сварки на постоянном токе. Устройство может использоваться при сварке неплавящимися электродами, например, при сварке алюминия.

Устойчивое горение дуги обеспечивается подачей на дугу в начале каждой половины периода переменного напряжения сварочного трансформатора импульса напряжения прямой полярности, т. е. совпадающего с полярностью указанного напряжения. 

Источник: http://build.novosibdom.ru/node/228

Вольт-амперная характеристика дуги (ВАХ)

Статическая вольт-амперная характеристика дуги показывает зависимость между установившимися значениями тока и напряжения дуги при постоянной ее длине.

Характеристика имеет три области

Первая область I характеризуется резким падением напряжения Uд на дуге с увеличением тока сварки Iсв. Такая характеристика называется падающей и вызвана тем, что при увеличении тока сварки происходит увеличение площади, а следовательно, и электропроводности столба дуги.

Во второй области II характеристики увеличения тока сварки не вызывают изменения напряжения дуги. Характеристика дуги на этом участке называется жесткой.

Такое положение характеристики на этом участке происходит за счет увеличения сечения столба дуги, анодного и катодного пятен пропорционально величине сварочного тока.

При этом плотность тока и падение напряжения на протяжении всего участка не зависят от изменения тока и остаются почти постоянными.

В третьей области III с увеличением сварочного тока возрастает напряжение на дуге Uд. Такая характеристика называется возрастающей. При работе на этой характеристике плотность тока на электроде увеличивается без увеличения катодного пятна, при этом возрастает сопротивление столба дуги и напряжение на дуге увеличивается.

Род тока при сварке – постоянный или переменный, полярность на постоянном токе может быть прямой (минус от источника на электроде), или обратной (минус от источника присоединяется к детали).

Ток обратной полярности применяют при сварке тонкого металла легкоплавких сплавов, легированных, специальных и высокоуглеродистых сталей, чувствительных к перегреву, при полуавтоматической сварке арматуры и металлоконструкций легированной проволокой сплошного сечения, при сварке электродами с фтористо-кальциевым покрытием.

При сварке на переменном токе полярность электродов и условия существования дуги периодически изменяются в соответствии с частотой тока.

В каждом полупериоде ток и напряжение меняют полярности при переходе синусоиды через нулевое значение. Дуга при этом угасает, температура активных пятен и дугового промежутка снижается. Повторное зажигание дуги в новом полупериоде происходит при повышенном напряжении – пике зажигания, которое выше напряжения на дуге.

Для повышения устойчивости дуги переменного тока добавляют в покрытия электродов и сварочные флюсы такие материалы, как мел, мрамор, полевой шпат и др., содержащие калий, натрий, кальций и другие элементы.

Газы, вводимые в зону горения дуги для защиты расплавленного металла, оказывают влияние на зажигание дуги переменного тока. При сварке с инертными газами (гелий, аргон) зажигание дуги затруднено, но возбужденная дуга горит устойчиво.

При сварке вольфрамовым электродом в среде аргона происходит испарение частиц металла с поверхности сварочной ванны и ближайших холодных зон, вместе с которыми удаляются и окисные пленки, что улучшает условия сварки и качество шва.

Углекислый газ при сварке на переменном токе действует отрицательно, поэтому сварка в углекислом газе применяется преимущественно на постоянном токе обратной полярности.

Источники питания сварочной дуги имеют также свои вольт-амперные характеристики, которые могут быть падающими, жесткими и возрастающими.

возрастающая

жесткая

падающая

Для стабильного горения дуги необходимо, чтобы было равенство между напряжениями и токами дуги (Uд, Iд) и источника питания (Uп, Iп).

Источники питания с падающей и жесткой характеристиками применяют при ручной дуговой сварке, с возрастающей характеристикой – при полуавтоматической сварке, с жесткой и возрастающей – при автоматической сварке под флюсом и для наплавки.

Устойчивое горение сварочной дуги возможно только в том случае, когда источник питания сварочной дуги поддерживает постоянным необходимое напряжение при протекании тока по сварочной цепи.

Работу сварочной цепи и дуги нужно рассматривать при наложении статической вольт-амперной характеристики (ВАХ) сварочной дуги на статическую вольт-амперную характеристику источника питания (называемую также внешней характеристикой источника питания) .

Ручная электросварка обычно сопровождается значительными колебаниями длины дуги. При этом дуга должна гореть устойчиво, а ток дуги не должен сильно изменяться. Также часто требуется увеличить длину дуги, поэтому дуга должна иметь достаточный запас эластичности при удлинении, т. е. не обрываться.

Статическая характеристика сварочной дуги при ручной сварке обычно является жесткой, и отклонение тока при изменении длины дуги зависит только от типа внешней характеристики источника питания.

При прочих равных условиях эластичность дуги тем выше, а отклонение тока дуги тем меньше, чем больше наклон внешней характеристики источника питания. Поэтому для ручной электросварки применяются источники питания с падающими внешними характеристиками.

Это дает возможность сварщику удлинять дугу, не опасаясь ее обрыва, или уменьшать длину дуги без чрезмерного увеличения тока.

Также обеспечиваются высокая устойчивость горения дуги и ее эластичность, стабильный режим сварки, надежное первоначальное и повторное зажигание дуги благодаря повышенному напряжению холостого хода, ограниченный ток короткого замыкания.

Ограничение этого тока имеет большое значение, так как при ручной дуговой сварке происходит переход капли расплавленного металла электрода на изделие, и при этом возможно короткое замыкание.

При больших значениях тока короткого замыкания происходят прожоги металла, прилипание электрода, осыпание покрытия электрода и разбрызгивание расплавленного металла. Обычно значение тока короткого замыкания больше тока дуги в 1,2-1,5 раз.

Основными данными технических характеристик источников питания сварочной дуги являются напряжение холостого хода, номинальный сварочный ток, пределы регулирования сварочного тока.

Напряжение холостого хода источника сварочного тока – напряжение на его зажимах при отсутствии дуги, номинальный сварочный ток – допустимый по условиям нагрева источника питания ток при номинальном напряжении на дуге.

В процессе сварки непрерывно меняются значения тока и напряжения на дуге в зависимости от способа первоначального возбуждения дуги и при горении дуги – характера переноса электродного металла в сварочную ванну.

При сварке капли расплавленного металла замыкают дуговой промежуток, периодически изменяя силу тока и длину дуги, происходит переход от холостого хода к короткому замыканию, затем к горению дуги с образованием капли расплавленного металла, которая вновь замыкает дуговой промежуток. При этом ток возрастает до величины тока короткого замыкания, что приводит к сжатию и перегоранию мостика между каплей и электродом. Напряжение возрастает, дуга вновь возбуждается, и процесс периодически повторяется.

Изменения тока и напряжения на дуге происходят в доли секунды, поэтому источник питания сварочной дуги должен обладать высокими динамическими свойствами, т. е. быстро реагировать на все изменения в дуге.

Источник: http://weldering.com/volt-ampernaya-harakteristika-dugi-vah

Ссылка на основную публикацию
Adblock
detector