Резка кислородом: виды и тонкости рабочего процесса

Резка металла кислородно-пропановым резаком

Резка кислородом: виды и тонкости рабочего процесса

При возникновении необходимости работы с толстослойным металлом используется газовый резак. Он осуществляет разрез металлического листа с помощью горячей пламенной струи. Она формируется благодаря смешению двух газов — это пропан и кислород.

Кислородно-пропановым резаком невозможно осуществить резку высокоуглеродистых металлов, меди и ее сплавов, алюминия. Спектр материалов, поддающихся воздействию, ограничен низкоуглеродистыми сталями марки от 08 до 20Г по ГОСТу (1050-60) и среднеуглеродистым — от 30 до 50Г2 (ГОСТ 1050-60).

Для работы необходимо иметь

  • кислородные шланги высокого давления
  • баллоны с пропаном и кислородом
  • мундштук
  • резак

Все детали газового оборудования стандартные и при поломке могут быть заменены.

Подготовка к работе

Перед началом работ необходимо убедится в безопасности: на одежде, полу, окружающих поверхностях должны отсутствовать следы масла и прочие легковоспламеняющиеся вещества. Далее следует осмотреть газовое оборудование на предмет полной комплектации и исправности. Следующие шаги помогут привести оборудование в режим готовности:

  1. Продуйте все шланги высокого давления газом для удаления пыли и грязи, прежде чем начнете подсоединять их. Проверьте подсос в каналах резака. Прикрепите с помощью ниппеля и гайки кислородный шланг к штуцеру с правой резьбой. Пропановый шланг прикрепите к левому штуцеру;
  2. Проверьте, нет ли утечки газов в разъемных соединениях;
  3. Проверьте исправность манометров. Обратите внимание на герметичность газовых редукторов.

Начало работы

  1. Закройте все вентили резака и выставьте на редукторах рабочие атмосферы: на кислородном – 5, на газовом – 0,5.
  2. Откройте пропановый баллон на четверть и подожгите.

  3. Уприте сопло резака под наклоном в металлическую поверхность и плавно откройте регулирующий кислород.

  4. Переходите к процессу регулировки пламени: поочередно открывайте кислород и газ, пока пламя не приобретет синий цвет и у него не появиться коронка.
  5. Силу пламени выбирайте исходя из толщины металла.

 Процесс резки

  1. Начинайте резку металла с той точки, от которой должен пойти разрез.
  2. Разогрейте эту точку до температуры возгорания металла (1000-1300 C).

    Когда металл воспламенится (поверхность при этом будет выглядеть мокрой) откройте вентиль режущего кислорода и пустите узконаправленную струю.

  3. Плавно ведите резак кислородный по линии разреза, под углом 84-85° в противоположную сторону от резки.

    Если толщина метала больше 95 мм, сделайте отклонение на 7-10°.

  4. После того, как линия разреза достигла 15-20 мм, измените угол наклона на 20-30°.

Если в процессе выполнения работы у вас оборвался кислородный шланг – не паникуйте.

Закройте подачу пропана, а затем оба баллона. Исчезнувшее в процессе регулировки пламя нужно разжечь повторно, предварительно закрыв вентили резака.

Техника безопасности  при резке и сварке

Разработанные четкие правила техники безопасности позволили сделать процесс контролируемым, жизнь и здоровье резчиков и окружающих стала вне опасности:

  1. Использование специальной маски с светофильтрами, респиратора и защитного костюма.
  2. Допуск к работам лиц, достигших возраста 18 лет и прошедших специальный курс по газовому делу, имеющие удостоверение с отметкой на проведение данного вида работ.
  3. Обмыливание на плотность всех соединений аппаратуры, трубопроводов и арматуры для предотвращения утечки газа.
  4. Использование специальных тележек и носилок для перемещения отдельных баллонов. Отсутствие ударение баллонов друг о друга при транспортировке.
  5. Не допускается попадание на кислородный редуктор, вентиль или шланг сжиженного газа, жиров, масла.
  6. Запрещается открывание замасленными руками редуктора и вентиля кислородного баллона.
  7. Перед началом работ необходимо выпускать через резак смесь газа и воздуха, образующуюся в шланге. Таким образом предотвращаем появление обратного удара в шланг и редуктор.
  8. Прогрев металла только сжиженным газом без кислорода строго запрещается.

Рекомендуем!   Дефекты сварочных швов и причины их образования

Источник: https://svarkagid.ru/tehnologii/rezka-metalla-kislorodom-i-propanom.html

Технология разделительной кислородной резки

ПодробностиОпубликовано 27.05.2012 13:09Просмотров: 11466

При выполнении разделительной кислородной резки необходимо учитывать, какие требования предъявляются к точности резки и качеству поверхности вырезаемой детали. Чем ниже эти требования, тем меньше расходуется кислорода и горючего и тем большей может быть скорость резки.

Например, при разделочной резке (резка в лом) качество поверхности и точность резки не имеют значения. Поэтому резка ведется вручную при наибольшей возможной скорости.

При заготовительной резке (вырезается заготовка, из которой механической обработкой изготавливается деталь) качество реза также не имеет значения, но должен быть выдержан определенный размер заготовки при наименьших припусках на механическую обработку. Резка производится вручную. При этом часто применяются простейшие приспособления (опорные ролики, циркуль, направляющие тележки и т. п.), с помощью которых легче выдержать задаваемые припуски.

Резка под сварку должна осуществляться так, чтобы была чистая поверхность реза и были соблюдены заданные размеры детали. Требования повышаются, когда детали подготавливаются под автоматическую сварку. В этом случае применяется обычно механизированная резка.

Чистовая вырезка круглых и фасонных деталей, которые будут использованы без последующей механической обработки, производится только автоматами.

Таким образом, в зависимости от вида кислородной разделительной резки необходимо добиваться определенного качества реза.

Качество реза определяется следующими показателями.

Отклонением линии реза от намеченной (не получается прямолинейный рез, вместо окружности получился эллипс и т. д.). Это отклонение вызывается смещением резака или разрезаемого листа, деформацией листа в процессе резки.

Отклонением от заданного угла реза, которое наблюдается при изменении угла наклона резака, при изменении формы струи режущего кислорода или при неправильно выбранной скорости резки.

Степенью оплавления верхней кромки, которое происходит при излишней мощности подогревающего пламени или заниженной скорости резки.

Глубиной и искривлением бороздок на поверхности реза. Эти бороздки обычно имеют криволинейное очертание, что объясняется отставанием режущей струи кислорода. Отставание становится особенно заметным при слишком высокой скорости резки или при слишком низком давлении кислорода.

Глубина бороздок также зависит от скорости перемещения резака и давления кислорода. Образованию бороздок способствует неравномерная скорость передвижения резака и колебания его, а также засорение отверстия режущего мундштука.

Техника резки. Перед началом резки лист нужно уложить на подкладки, чтобы беспрепятственно удалялись шлаки из места реза. Зазор между полом и, нижней плоскостью листа должен быть не менее 100— 150 мм.

Затем лист по предполагаемой линии реза необходимо очистить от окалины, ржавчины, краски и других загрязнений.

При кислородной резке металла с загрязненной поверхностью резко ухудшается качество резки и уменьшается производительность.

Зачистка поверхности производится стальной щеткой. Для удаления окалины, краски и масла следует медленно провести по линии реза пламенем резака или горелки. Под действием тепла окалина отделится от поверхности металла, краска и масло сгорят. После этого поверхность зачищают стальной щеткой.

Разметка листа производится с помощью чертилки или мела. Перед началом резки газорезчик подбирает и устанавливает на резаке нужные для заданной толщины разрезаемого металла номера мундштуков, проверяет редукторы, водяной затвор, шланги, резак, вентили баллонов, присоединяет шланги и надежно их закрепляет на резаке и источнике газов.

Установив необходимое давление газов, производят зажигание резака и регулировку пламени. Состав, свойства и строение подогревательного пламени такие же, как и у сварочного.

Роль подогревательного пламени при разделительной кислородной резке различна в зависимости от толщины разрезаемой стали, условий резки и требований, предъявляемых к поверхности реза.

При резке стали толщиной до 80 мм на скорость резки главным образом влияет мощность подогревательного пламени: чем мощнее пламя, тем больше скорость. Количество тепла, выделяемое подогревательным пламенем, больше или равно количеству тепла, получаемого при сжигании металла во время резки.

Однако увеличивать в значительной степени подогревательное пламя нельзя, так как начинают заметно оплавляться верхние кромки реза. Поэтому в данном случае выгоднее брать подогревающее пламя с избытком кислорода, при котором получается высокая концентрация тепла на поверхности нагреваемого листа.

При резке стали толщиной 80—300 мм наилучшее состояние поверхности обеспечивается при нормальном подогревательном пламени.

При резке стали толщиной свыше 300 мм количество тепла, выделяемое подогревательным пламенем, значительно меньше количества тепла, получаемого при сгорании металла в месте реза. В этом случае следует брать подогревательное пламя с избытком ацетилена.

При резке литья, покрытого окисленной коркой и песком, а также при резке проката с окалиной и ржавчиной на поверхности необходимо более мощное пламя с избытком кислорода для быстрого удаления (оплавления) поверхностного слоя и доведения чистого металла до температуры воспламенения, чем при резке проката с чистой поверхностью.

Окончательную регулировку пламени необходимо вести при открытом вентиле режущего кислорода. В противном случае вследствие того, что режущий и подогревательный кислород поступает в резак по одному шлангу, при пуске режущего кислорода во время резки пламя будет обедняться кислородом.

При пуске режущей струи кислорода подогревательное пламя не должно гаснуть или изменяться по форме и размерам.

Мощность подогревательного пламени выбирают в зависимости от толщины разрезаемого металла, скорости резки и состава стали. Требуемая для подогрева мощность увеличивается при увеличении содержания в стали углерода и специальных примесей.

Практически при резке листовой стали ядро пламени отстоит от поверхности металла на 1,5—2,5 мм. Расстояние от мундштука до металла в процессе резки следует поддерживать постоянным.

Давление режущего кислорода также имеет большое значение при резке. При слишком большом давлении увеличивается расход, кислорода и разрез получается менее чистым. При недостаточном давлении шлаки не будут выдуваться и резка будет происходить не на всю толщину металла.

Процесс резки начинается с нагревания участка металла, расположенного в начале намечаемой линии разреза, до температуры, близкой к температуре плавления металла. Затем на нагретое место пускают струю режущего кислорода и начинают перемещать резак вдоль линии реза.

В некоторых случаях резку приходится начинать не с края поверхности. В этом случае необходимо в точке начала реза проделать отверстие диаметром, равным примерно ширине предполагаемого реза. При толщине металла до 50 мм это отверстие может быть вырезано ручным резаком.

В этом случае поверхность листа подогревают при вертикальном положении горелки резака. После подогрева головку резака наклоняют и одновременно подают режущий кислород. В наклонном положении головка удерживается в течение времени, какое нужно для получения сквозного отверстия.

Этот наклон головки резака необходим для того, чтобы предупредить засорение отверстия сопла подогревающего пламени шлаком. Признаком засорения являются, хлопки.

С получением сквозного отверстия головке резака придают нормальное положение, и отверстие разделывается до нужных размеров.

При толщине металла 50—100 мм отверстие просверливается сверлом. При больших толщинах первоначальное отверстие в металле может прожигаться кислородным копьем.

При резке металла круглого сечения на поверхности в месте начала реза надо сделать насечку зубилом. В месте насечки края металла быстро нагреваются до температуры воспламенения и тем самым облегчается начало процесса резки.

В начале резки подогревательное пламя резака, направляемое на край разрезаемого металла, может составлять различные углы наклона к поверхности. При резке металла толщиной до 50 мм подогревательное пламя направляется вертикально.

При резке более толстого металла подогревательное пламя резака устанавливается с наклоном к поверхности разрезаемого металла на угол 10—15° по ходу резака, что позволяет лучше прогреть кромки по всей толщине металла и облегчить начало процесса резки.

Резку толстого металла часто начинают с нижней кромки, постепенно поднимая резак по торцу до верхней кромки, после чего производят резку на всю толщину.

Положение резака в процессе резки деталей малой толщины (до 5—6 мм) должно быть таким, чтобы режущая струя имела наклон в направлении, противоположном направлению резки, что искусственно увеличивает разрезаемую толщину, замедляет прогрев места реза и тем самым предупреждает оплавление кромок.

При резке деталей средней толщины (10—50 мм) резак обычно устанавливается перпендикулярно к поверхности разрезаемого металла. Однако при резке по прямой линии листовой стали толщиной до 30 мм резак следует располагать с наклоном на угол 20—30° в сторону, обратную движению. В этом случае скорость резки существенно повышается.

При резке металла большой толщины перпендикулярное направление режущей струи приводит к отставанию резки нижней кромки, и резка может прекратиться.

Поэтому при резке деталей толщиной свыше 50 мм режущую струю следует направлять по ходу резки под углом 15—25° от вертикали для достижения полного срезания нижнего края листа.

Наклоны резака возможны только при выполнении резки вручную или при прямолинейной резке резательными приборами. При резке по криволинейным контурам положение резака должно быть перпендикулярным к поверхности разрезаемого металла.

Движение резака должно быть равномерным. Скорость передвижения резака должна соответствовать скорости окисления металла. При движении резака с правильно установленной скоростью поток искр вылетает под прямым углом к разрезаемой поверхности, т. е. прямо вниз. При слишком большой скорости движения резака поток искр будет отставать, а при слишком медленном — опережать резак.

По окончании резки резак следует задержать на выходе и произвести разрез нижнего участка (если имеется значительное отставание).

При резке с предварительным подогревом, обычно применяющимся для сталей с повышенным содержанием углерода и специальных примесей, скорость резки увеличивается. Температура подогрева берется около 300°.

При резке профильной стали – уголка, швеллера, двутавра и других — нужно направлять струю режущего кислорода так, чтобы не повредить соседнюю полку или стенку.

При реже углового профиля лучше всего положить его на прокладку краями полок вниз, утлом вверх. Резку производить снизу без перерывов. По мере передвижения резака к вершине угла струю режущего кислорода необходимо наклонить в сторону начала реза, т. е. от второй полки, с тем чтобы ее не повредить. Такой же наклон придается головке резака , при резке швеллера,

При резке тавра или двутавра при приближении резака к средине полки его также следует наклонить струей наружу (от стенки) и в таком положении перерезать металл за средину полки. Далее, не прерывая резки, резак нужно установить перпендикулярно к полке.

При резке стальных заготовок круглого сечения положение резака в момент подогрева должно соответствовать позиции 7, а при резке — позиции 2.

Для повышения производительности и качества резки следует использовать простейшие приспособления: циркульное устройство и тележку, поставляемые заводом-изготовителем к каждому резаку, а также направляющие. Такие приспособления дают возможность избежать случайных колебаний резака относительно линии реза.

На рисунке приведены примеры вырезки кругов и отверстий при помощи циркуля и резки трубы с помощью специальной каретки.

При резке по окружности газорезчику приходится перемешаться вместе с резаком, что представляет большие неудобства.

В этих случаях лучше пользоваться циркулем с вращающейся головкой.

Циркуль имеет головку 3, внутри которой свободно вращается втулка 1. В последней крепится резак 6 винтом 2.При резке по окружности резчик остается на месте, шланги при этом не скручиваются, так как положение резака во время работы сохраняется в одном направлении, а вращается только головка циркуля вокруг центра 7.

В головке циркуля имеется гнездо с резьбой для крепления планки с опорным роликом.

Вращающаяся головка для резки по окружности позволяет укреплять резак на необходимой высоте. При резке ровных листов могут быть применены простейшие приспособления.

Однотипные фигурные детали могут вырезаться с помощью шаблона, устанавливаемого на разрезаемый лист. Постоянство расстояния между концом мундштука резака и поверхностью листа обеспечивается кольцом 2, укрепляемым на головке резака. Головка резака в процессе резки прижимается к краю шаблона.

При резке тавра или двутавра при приближении резака к средине полки его также следует наклонить струей наружу (от стенки) и в таком положении перерезать металл за средину полки. Далее, не прерывая резки, резак нужно установить перпендикулярно к полке.

Источник: http://electrowelder.ru/index.php/gazosvarschik/75-technology-of-the-underbar-oxygen-cutting.html

Большая Энциклопедия Нефти и Газа

Cтраница 1

Режим кислородной резки характеризуется основными параметрами: мощностью подогревательного пламени, давлением и расходом режущего кислорода, скоростью передвижения резака по поверхности разрезаемого металла, заданной шириной реза.  [1]

Режим кислородной резки в основном определяется мощностью подогревающего пламени, скоростью резки и давлением режущего кислорода. Мощность подогревающего пламени должна обеспечить быстрый подогрев металла в начале резки до температуры воспламенения и необходимый нагрев его в процессе резки.  [2]

Режим кислородной резки характеризуется мощностью подогревательного пламени, давлением и расходом режущего кислорода и скоростью резки, от которых зависит качество и ширина реза. Длительность нагрева в начальной точке реза подогревающим пламенем определяется толщиной металла, его составом, мощностью пламени, родом горючего и пр.  [3]

Режим кислородной резки характеризуется основными параметрами: мощностью подогревательного пламени; давлением и расходом режущего кислорода; скоростью передвижения резака по поверхности разрезаемого металла; заданной шириной разреза.  [4]

К параметрамрежима кислородной резки относятся мощность пламени, давление режущего кислорода и скорость резки.  [5]

Основными показателямирежима кислородной резки являются: мощность подогревающего пламени, давление режущего кислорода и скорость резки.

Мощность подогревающего пламени характеризуется расходом горючего газа в единицу времени и зависит от толщины разрезаемого металла.

Она должна обеспечивать быстрый подогрев металла в начале резки до температуры воспламенения и необходимый нагрев его в процессе резки. Для резки металла толщиной до 300 мм применяют нормальное пламя.

 [6]

Основными параметрамирежима кислородной резки являются: мощность подогревающего пламени, давление режущего кислорода и скорость резки. Мощность подогревающего пламени характеризуется расходом горючего газа в единицу времени и зависит от толщины разрезаемого металла.

Она должна обеспечивать быстрый подогрев металла в начале резки до температуры воспламенения и необходимый нагрев его в процессе резки. Для резки металла толщиной до 300 мм применяют нормальное пламя.

При этом длина видимого факела пламени ( при закрытом вентиле кислорода) должна быть больше толщины разрезаемого металла.  [7]

Основные показателирежима кислородной резки следующие: мощность нагреваемого пламени, давление режущего кислорода и скорость резки.

Мощность подогревающего пламени характеризуется расходом горючего газа в единицу времени и зависит от толщины разрезаемого металла.

Она должна обеспечивать быстрый нагрев металла в начале резки до температуры воспламенения и необходимый нагрев его в процессе резки. Для резки металла толщиной до 300 мм применяют нормальное пламя.  [8]

Основными показателямирежима кислородной резки являются: мощность подогревающего пламени, давление режущего кислорода и скорость резки.

Мощность подогревающего пламени характеризуется расходом горючего газа в единицу времени и зависит от толщины разрезаемого металла.

Она должна обеспечивать быстрый подогрев металла в начале резки до температуры воспламенения и необходимый нагрев его в процессе резки. Для резки металла толщиной до 300 мм применяют нормальное пламя.

 [9]

Какими основными показателями характеризуетсярежим кислородной резки.  [10]

Какими основными показателями характеризуетсярежим кислородной резки.  [11]

Какими основными параметрами характеризуетсярежим кислородной резки.  [12]

Поэтому любые данные порежимам кислородной резки являются рекомендованными и могут быть использованы с некоторыми поправками, вытекающими из производственных условий предприятия.  [13]

Большое разнообразие типов и марок сталей, а также факторов, влияющих нарежимы кислородной резки, делают невозможным подробное изложение последних в кратком обзоре современного состояния развития технологического процесса кислородной резки. В связи с этим ниже приведен ряд режимов и практических рекомендаций, используемых при резке наиболее употребляемых сталей с содержанием углерода не более 0 25 % и титановых сплавов.  [14]

Режим кислородной резки характеризуется следующими основными параметрами: мощностью подогревательного пламени, давлением и расходом режущего кислорода, скоростью резки, шириной реза. Мощность подогревательного пламени – расход горючего газа в единицу времени – зависит от толщины разрезаемой стали.  [15]

Страницы:      1    2

Источник: http://www.ngpedia.ru/id391663p1.html

Что такое плазменная резка металлов?

18.01.2016

(Википедия)

Плазменная резка на сегодняшний день считается одним из наиболее эффективных способов прямолинейного и фигурного раскроя металла. Позволяет выполнять резание всех видов сталей, алюминия, меди, чугуна, титана, листового и профильного проката, осуществлять скос кромок под определенным углом.

Характерные преимущества процесса

Плазменная резка металла характеризуется такими особенностями:

  1. Высокая производительность. В 5-10 раз выше скорость раскроя сравнительно с газокислородным способом. Уступает по данному параметру лишь лазерному резанию.
  2. Универсальность. Возможен раскрой практически любого материала, достаточно установить оптимальные параметры процесса – мощность и давление газа.
  3. Качество подготовки не имеет особого значения – лакокрасочное покрытие, грязь или ржавчина на металле для плазменной резки не страшны.
  4. Повышенное качество и точность. Современные агрегаты обеспечивают минимальную ширину реза, относительно чистые без чрезмерного количества окалины на кромках – в большинстве случаев не нуждаются в дополнительной механической обработке и даже зачистке.
  5. Небольшая зона термического влияния способствует минимизации деформации вырезаемых заготовок в результате воздействия повышенной температуры.
  6. Возможность фигурной вырезки сложных геометрических форм.
  7. Безопасность процесса в отличие от газо-кислородной резки, где присутствуют баллоны со сжатым кислородом и горючим газом.
  8. Агрегаты для плазменной резки металла просты в обслуживании и эксплуатации.

Что представляет собой процесс плазменной резки металла?

Плазма – токопроводящий ионизированный газ высокой температуры. Образуется струя в специальном устройстве – плазмотроне. Он состоит из таких основных элементов:

  1. Электрод (катод) – оснащен вставкой из материала с высокой термоэлектронной эмиссией (гафний, цирконий), которая выгорает в процессе эксплуатации и при выработке более 2 мм требует замены.
  2. Механизм закрутки газового потока.
  3. Сопло – как правило, изолированное от катода специальной втулкой.
  4. Кожух – защищает внутренние компоненты от брызг расплавленного металла и металлической пыли.

Источник питания воздушно-плазменной резки имеет 2 провода – анод (с положительным зарядом) и катод (с отрицательным зарядом). «Плюсовой» провод подсоединяется к разрезаемому металлопрокату, «минусовой» – к электроду.

В начале процесса плазменной резки металла поджигается дежурная дуга между катодом и наконечником, которая выдувается из сопла, а при касании к обрабатываемому изделию образует уже режущую дугу.

При заполнении формирующего канала в плазмотроне столбом дуги в дуговую камеру под давлением в несколько атмосфер начинает подаваться плазмообразующий газ, который подвергается нагреву и ионизации, что способствует его увеличению в объеме. Это ведет к его истеканию из сопла с большой скоростью (до 3 км/сек.), а температура дуги в этот момент может достигать от 5000 до 30000 °C.

Небольшое отверстие в сопле сужает дугу, что способствует ее направленному воздействию в определенную точку на металле, который практически мгновенно нагревается до температуры плавления и выдувается из зоны реза.

После прохождения плазмотроном по заданному контуру получается заготовка необходимых размеров и формы с ровными кромками и минимальным количеством окалины на них.

Плазмообразующие газы для раскроя различных металлов

Для плазменной резки металлов могут использоваться как активные, так и неактивные газы. Их выбор осуществляется в зависимости от разновидности металла и его толщины:

  • Азотоводородная смесь предназначена для меди, алюминия и сплавов на их основе. Максимально возможная толщина – 100 мм. Неприменима для титана и всех марок сталей.
  • Азот с аргоном используется в основном для плазменной резки высоколегированных марок сталей, толщина которых не превышает 50 мм, но не рекомендована смесь для черных металлов, титана, меди и алюминия.
  • Азот. С его помощью выполняется раскрой сталей с низким содержанием углерода и легирующих элементов толщиной до 30 мм, высоколегированных – до 75 мм, меди и алюминия – до 20 мм, латуни – до 90 мм, титана неограниченной толщины.
  • Сжатый воздух. Оптимально подходит для воздушно-плазменной резки черных металлов и меди толщиной до 60 мм, а также алюминия – до 70 мм. Не предназначен для титана.
  • Смесь аргона с водородом – раскрой сплавов на основе алюминия и меди, сталей с большим содержанием легирующих элементов толщиной свыше 100 мм. Не рекомендуется использовать для низкоуглеродистых, углеродистых, низколегированных марок сталей и титана.

Но недостаточно просто подключить баллон с необходимым плазмообразующим газом, так как от его состава зависят многие технические характеристики оборудования:

  • мощность и внешние (статистические и динамические) характеристики источника питания;
  • циклограмма аппарата;
  • способ крепления катода в плазмотроне, а также материал, из которого он изготовлен;
  • тип конструкции механизма охлаждения для сопла плазмотрона.

Советы по плазменной резке цветных и легированных металлов:

  • При ручном раскрое высоколегированных марок сталей в качестве плазмообразующего газа рекомендуется использовать азот.
  • Для обеспечения стабильного горения дуги при ручном резании алюминия аргоноводородной смесью в ней должно содержаться не более 20 % водорода.
  • Латунь лучше всего режется азотом и азотоводородной смесью, а также характеризуется более высокой скоростью раскроя.
  • Медь после разделительного резания в обязательном порядке подвергается зачистке по плоскости реза на глубину 1-1,5 мм. К латуни данное требование не относится.

Области применения плазменной резки

Благодаря высокой производительности, универсальности и доступной стоимости плазменная резка металлов пользуется огромным спросом во многих отраслях промышленности:

  • металлообрабатывающие предприятия и компании;
  • авиа-, судо- и автомобилестроение;
  • строительная промышленность;
  • предприятия тяжелого машиностроения;
  • металлургические заводы;
  • изготовление металлоконструкций.

Все сферы использования перечислить просто невозможно – ручные аппараты и автоматические машины для плазменной резки металлов можно встретить практически повсеместно. Их применяют как крупные заводы по изготовлению металлоконструкций, так и небольшие фирмы, специализирующиеся на художественной ковке и обработке деталей.

Особое место среди данного оборудования занимают машины для плазменной резки металлов с ЧПУ – они сводят к минимуму человеческий фактор, значительно повышают производительность. Но основным их преимуществом является сокращение расхода металлопроката благодаря возможности создания специальных программ.

Высококвалифицированные технологи разрабатывают карты раскроя, представляющие собой виртуальный лист металла определенных размеров, на котором они максимально плотно укладывают заготовки с учетом ширины реза и многих других параметров процесса с целью более рационального использования металлопроката.

Тонкости процесса раскроя металла

Для получения качественной заготовки в процессе плазменной резки требуется поддержание постоянного расстояния между соплом и разрезаемым металлом – как правило, в пределах 3-15 мм. В противном случае возможно увеличение ширины реза, зоны термического влияния, несоответствие заготовки заданным размерам.

Ток в процессе работы должен быть минимальным для определенного материала и толщины. Завышенные его значения и, соответственно, повышенный расход плазмообразующего газа являются причиной ускоренного износа катода и сопла плазмотрона.

Самая сложная операция в процессе плазменной резки металла – пробивка отверстий. Это вызвано большой вероятностью образования двойной дуги и поломкой плазмотрона. Пробивка производится на увеличенном расстоянии между катодом и анодом – между соплом и поверхностью материала должно быть 20-25 мм. После сквозной пробивки плазмотрон опускается в рабочее положение.

Плазменная резка — вид плазменной обработки материалов, при котором в качестве режущего инструмента вместо резцаиспользуется струя плазмы.

Источник: http://www.Purm.ru/blog/plazmennaya-rezka-metallov/

Резка кислородом: виды и тонкости рабочего процесса

Главная » Новости

Опубликовано: 26.08.2018

Резка кислородом

Резка кислородом базируется на свойстве металла сгорать под действием струи кислорода, а также на удалении струей образующихся продуктов горения. Резку материала начинают с нагрева металла в начале реза посредством подогревающего пламени резака до тех пор, пока в струе кислорода не образуется температура воспламенения металла.

После этого подается режущий кислород, который, в свою очередь, приводит к непрерывному образованию окислов металла по всей толщине, после чего резак перемещается по линии реза. Кислородная резка применяется по отношению только к тем металлам и сплавам, которым под воздействием кислорода присущи следующие качества:

Температура ниже, чем этот показателя при их плавлении; Температура плавления окислов металла, которые образуются во время резки, ниже температурного показателя плавления самого металла; Количество тепла, выделяемое при сгорании в кислороде, достаточно велико для того, чтобы поддерживалась постоянная кислородная резка; Шлаки, появившиеся в результате резки, должны быть жидкотекучими, а также достаточно легко выдуваться из места, где применялась кислородная резка; Теплопроводность сплавов и металлов не слишком высока.

Виды резки кислородом

Существуют несколько видов кислородной резки. Эти разновидности зависят от формы, материала детали, а также от места разреза.

Группы кислородной резки:

Первая группа — Разделительная кислородная резка (прямолинейная, фигурная, резка с применением кислорода со скосом кромок под сварку):

Скоростная кислородная резка; Нормальная кислородная резка; Кислородно-флюсовая.

Вторая группа — Поверхностная обработка:

Строжка поверхности; Строжка канавок; Обточка.

Третья группа — Сверление (или прожигание отверстий);

Кислородным копьем; Обычной струей.

Четвертая группа — Специальные процедуры резки кислородом (электрокислородная, подводная кислородная резка и т. д.).

Теперь нужно разобраться со всеми группами, которые относятся к такому понятию, как кислородная резка.

Разделительная резка

В наше время разделительная кислородная резка металла (возможна с пропаном) заслужила особое распространение. Технология кислородной резки позволяет использовать методику практически повсеместно. Осуществляется кислородная процедура при помощи струи, перпендикулярной к поверхности (разрезаемой) или наклонной (для скоса кромок).

Нормальная резка

Резка кислородом начинается с подогрева кромки. При получении необходимой температуры (1050 – 3000 гр. С – температуры воспламенения), пускается струя режущего кислорода (начинается расход кислорода), после чего начинается перемещение резака (при помощи механизированного привода или вручную).

Резка кромок металлических листов кислородом с подготовкой для сварки может производиться тремя резаками одновременно. Стоит обратить внимание на то, что при этом обе кромки в одночасье получают необходимый Х-образный скос.

Процедура (расход кислорода и применение резки) протекает достаточно производительно, поскольку работа наклонных резаков проводится в облегченных условиях, разогревая металлическую деталь, прогретую вертикальным (идущим впереди) резаком.

Расход кислорода — важный момент, требующий внимания.

Скоростная резка

Отметим, что скорость разделительной резки пропаном с применением кислорода в случае применения резака специальной формы может быть значительно увеличена, но при этом понадобится, чтобы резак направлял режущую струю под углом к плоскости разрезаемого листа металла, а не перпендикулярно. При удлинение пути прохождения струи в металлической детали наблюдается подогрев кромки, возникающий вследствие перемещения по ней расплавленного шлака. Производительность работы при этом повышается в несколько раз.

Кислородно-флюсовая резка

Для того чтобы произвести разделение металлических деталей с высоким содержанием легирующих примесей на части, применяют кислородно-флюсовую резку. Стоит отметить, что разрезание легирующих сталей или чугуна, к примеру, содержащих хром в составе на уровне 7%, посредством обычных методов кислородной резки практически невозможно.

При резке кислородом (как только начат расход баллона) образуются окислы, которые имеют высокие температуры плавления, заставляют шлак густеть, а также отвратительно удаляются и создают препятствия окислению слоев металла (при резке), лежащих снизу. Во время применения кислородно-флюсовой резки металла из специального бункера в струю кислорода (режущего) подается порошкообразный флюс. Не забывайте про расход кислорода.

Поверхностная обработка

Этот способ производится газокислородной струи с целью реального создания канавок для того, чтобы наложить сварной шов, а также ликвидировать пороки в отливках, сварных швах и поковках.

Отличие поверхностной обработки от разделительной резки металла заключается в том, что мундштук резака располагается перпендикулярно по отношению к поверхности обрабатываемого изделия (во время поверхностной обработки угол составляет 35° и больше). Практически любая поверхностная резка кислородом приводит к образованию желобка, который характеризуется шириной, кривизной и глубиной поверхности.

Строжка поверхности

При строжке поверхности и дальнейшей обработке немаленьких поверхностей желобок выходит большой протяженности, сечения по длине. Резак при резке перемещают посредством механизма.

Строжка канавок

Удаление пороков материала, а также строжка канавок производится при помощи ручного способа.

В поверхностной обработке металлических деталей применяются специальные резаки для кислородной резки с увеличенной мощностью пламени, а также особым наконечником.

Мундштук резаков имеет шесть концентрических отверстий для пламени (подогревающего) вместо кольцевого канала, предназначенного для режущего кислорода.

Обточка

Угол между обрабатываемой поверхностью и осью мундштука находится в пределах 15-25 гр. с учетом расстояния от конца мундштука до обрабатываемой поверхности 1-2 миллиметра (не более). Стоит отметить, что у резака удлиненная рукоятка. Во время обточки цилиндрических изделий резак располагают в вертикальном положении на суппорте, в то время как изделие поворачивается в центрах.

Сверление

С помощью газового резака выполняются отверстия. Также предоставляется возможность прожигать отверстия в целом поверхности металла или начиная от начального маленького отверстия, просверленного для исходного нагрева кромки.

Фактически такая процедура представляет собой газокислородную резку , направленную по окружности малого диаметра. Результатом прожигания может стать неправильная форма отверстия. Отверстие удается прожечь в том случае, когда имеется небольшая толщина металла (не более 8 миллиметров).

Для прожигания отверстия большого диаметра в болванках и отливках в металлургической промышленности используют разновидность процесса, именуемую резкой копьем.

Специальные процессы резки кислородом

Подводная резка

Этот вариант также является одним из способов понятия, более известного как кислородная резка. Широко применяется в водолазном деле или во время ремонта частей судна, находящегося под водой. Также применение способ находит во время проведения гидротехнических работ, разборки затонувших суден.

Газокислородное пламя, расход которого требует внимания, под толщей воды имеет свойство отлично гореть, но при условии, что вокруг него будет создана некая защитная оболочка.

В свою очередь, защитная оболочка, способствующая газокислородной резке – продуваемый воздух продукты горения (расход). В роли горючего газа, расход которого достаточно велик, во время проведения подводной резки исполняет преимущественно водород.

Также может применяться ацетилен, однако, только на небольших глубинах (до 10 метров).

При подводной резке металлов применяется жидкое горючее: бензол, бензин и т. д. Резак для подводной резки предусматривает три мундштука: через первый мундштук (внутренний) подается кислород, по второму проходит горячая водородно-кислородная смесь, а третий мундштук (наружный) служит колпаком для образования защитного воздушного слоя.

В соответствии с этим к резаку подводятся шланги от трех баллонов: кислородного , воздушного, водородного. Во время подводной резки давление кислорода устанавливается в пределах 5-10 атмосфер (расход достаточный).

Разжигание смеси, а также дальнейшая регулировка пламени производились на воздухе. Сегодня для этого применяются специальные подводные электрические зажигалки низкого напряжения.

Такие зажигалки напитываются от батарей щелочных аккумуляторов.

В последнее время в подводной резке металла получил широкое применение кислородно-дуговой процесс, во время протекания которого металлическая деталь буквально сжигается кислородом, если расход достаточен. При этом подогрев осуществляется посредством дуги. Также применятся стальной трубчатый электрод, во внутреннюю часть которого вдуваются объемы кислорода.

Кислородно-дуговой способ резки

Подача кислорода (расход) производится сзади от перемещающейся дуги. Способ предполагает использование сплошного угольного или металлического электрода. В покрытие таких электродов сделан канал, который подводит порции кислорода. Кислородно-дуговой процесс резки металла зачастую применяется при резке на открытом воздухе.

Вместе с тем производительность и качество резки ниже, чем у обычной газокислородной резки. Кислородно-дуговое воздействие на металлическую деталь целесообразно для тех сплавов и металлов, которые не поддаются кислородной резке обычным способом. Пропаном в этих целях не пользуются.

Нужно отметить важность соблюдения правил техники безопасности при газовой резке, а также других процедурах кислородной обработки металлов. Огромное внимание стоит уделять взрывоопасности горючих газов.

Помимо всего, необходимо брать во внимание то, что наличие кислорода, интенсифицирующего горение, имеет все шансы способствовать возгоранию посторонних материалов (тканей, краски и т. д.). В особенности это касается работы в закрытых отсеках суден, котлах и т. п.

Поэтому прежде чем приступить к работам по резке, и с баллонами сжатого газа, следует внимательно изучить необходимые инструкции.

Работа с пропаном и прочими газами опасна для жизни, поэтому стоит относиться к резке и применению опасных предметов с высокой осторожностью. Расход кислорода должен соответствовать нормам.

Источник: http://fashionpark.kiev.ua/index/rezka/2011257905-rezka-kislorodom-vidy-i-tonkosti-rabochego-processa.html

Ссылка на основную публикацию
Adblock
detector