Ковка чугуна – миф или реальность. свойства ковкого чугуна

Особенности и свойства ковкого чугуна

Сплавом железа с углеродом (от 2,14% до 5%) является чугун, используемый в промышленности, для изготовления санитарно-технических изделий, применяемый в хозяйстве и быту.

В зависимости от цвета структуры материала в разрезе, он может быть серым или белым. Углерод в сером чугуне включён:

  • в виде графита (в свободном состоянии);
  • в виде цементита (в химически связанном состоянии).

Второй вариант сопровождается высокими показателями хрупкости и твёрдости. В составе белого сплава углерод содержится только в связанном виде, поэтому он также обладает повышенной твёрдостью. Из заготовок белого сплава, путём длительных термических воздействий получают ковкий чугун (КЧ).

Есть два основных метода его получения:

  • американский;
  • европейский.

Американский подход подразумевает то, что отжиг будет выполняться в песке с температурой в пределах от 800 до 850 градусов. При этом углероды перейдут из химически связанного состояния в форму графитовых зёрен, размещённых среди чистого железа. В результате этого, сплав будет обладать вязкостью, что и позволяет называть его ковким на ферритной основе.

Для того чтобы получить ковкий европейский чугун, томление должно происходить в железной руде при температуре от 850 до 950 градусов, что приведёт к распаду цементита в верхнем слое заготовки и частичному выгоранию углерода. Вследствие этого, слой с глубиной до 2 мм станет более пластичным. К тому же середина останется твёрдой. Полученный, таким образом, чугун ещё называется перлитным.

Особенности и свойства металла

Литейные свойства материала и особенности технологии формы. Ковкий чугун, полученный из отливок белого малоуглеродистого сплава, обладает относительно низкими литейными характеристиками:

  • слабой текучестью;
  • большой усадкой в жидком виде, при затвердевании и в твёрдом состоянии;
  • большой приверженностью к формированию горячих и холодных дефектов.

Все это создаёт существенные трудности во время изготовления чугунных деталей, требует высокого нагрева металла и усиленных мер борьбы с литейными пороками.

Получение КЧ должно осуществляться с учётом усадки в литейной форме и изменений размеров во время термического воздействия (томления).

Самой большой усадкой обладают тонкостенные заготовки из ферритного ковкого сплава, самой малой – толстостенные детали из перлитного сплава.

Производство этих материалов происходит обычно при температурах от 1350 до 1450 градусов. Для обеспечения таких условий требуются особые меры для повышения температуры сплава, определяющие грамотный подбор агрегата.

Механические свойства металла

Механические свойства КЧ зависят от суммарной доли включённого в его химический состав углерода и отжига. Для получения высококачественного сплава нужно выбирать чугунные отливки с низким содержанием углерода от 2,4 до 2,7%.

Показатель твёрдости имеет прямую зависимость от состава, значение прочности и пластичности – от количества графита. В отличие от материала с шарообразным графитом, большую роль играет не только форма, но и число графитовых зёрен.

Согласно этому максимальной прочности можно достичь при получении дисперсного перлита с малым числом компактного графита, а наивысшей пластичности – при получении феррита с таким же объёмом графита. Показатель обрабатываемости ковкого сплава приближен к высокопрочному чугуну.

Ковкий чугун нормально эксплуатируется в низких температурных режимах, но по сравнению с серым сплавом обладает высоким показателем хрупкости. Температурное воздействие на химические свойства ковкого сплава проявляется в основном при отметке свыше 400 градусов в снижении пределов упругости и текучести, а также в увеличении показателя относительного удлинения после разрыва.

Порог хрупкости феррита существенно ниже, чем в случае с перлитом. При отсутствии дефектов литья, отливки из ковкого сплава являются герметичными в условиях сдавливания свыше 20 МПа. Перлитный ковкий чугун обладает высокой износостойкостью во время эксплуатации со смазочным материалом при давлениях до 20 МПа и быстро изнашивается от трения без смазки.

Что дает добавление алюминия в металлический сплав

Алюминий – это популярный модификатор КЧ.

Добавка его в объёме от 0,015—0,025% от общей массы жидкого металла способствует исключению первичного графита при нормальных пропорциях углерода и кремния с толщиной детали, менее 4 см.

Повышение показателей механических характеристик при оптимальных присадках алюминия связано с увеличением уровня дисперсности и более равномерным размещением зёрен графита среди железа.

Переизбыток алюминия в КЧ приводит к резкому падению механических свойств. Применение бора как одной из главных составляющих модифицирующие смеси в пропорции равной 0,002-0,003%, улучшает механические характеристики ферритного сплава и сокращает время отжига. В состав модифицирующей смеси могут включаться также:

Процесс модифицирования снижает влияние смены температур при заливке сплава в форму и изменений его химического состава на механические свойства, что подтверждает универсальность ковкого чугуна.

Следует учесть, что эффект влияния модифицирующих смесей на механические характеристики сплава и сокращение длительности процедуры отжига зависят от срока пребывания жидкого металла в ковше перед разливом.

Если его передержать, то эффективность от добавления модификаторов резко упадёт.

Для добавления особых свойств допускается легирование чугуна хромом или никелем. В результате этого сплав получается кислотоупорным, высокопрочным к ударным воздействиям.

Общепринятая маркировка металла

Согласно с рекомендациями ГОСТ 1215–79, маркировка ковкого чугуна включает в себя первые буквы его наименования – КЧ.

Прописанное число, состоящее из двух цифр, отображает показатель временного сопротивления или предел стойкости к деформации и разрушению, измеряемый в 10 МПа – КЧ 70.

Цифра, прописанная через дефис, отражает величину пластической деформации во время растяжения с единицей измерения «%» (относительное удлинения) – КЧ70-2.

Вдобавок к этому, марки ковких сплавов классифицируются в зависимости от их структур.

К ферритному и ферритно-перлитному классу относятся КЧ с относительно низкими пределами стойкости к разрушениям и более высокими процентами относительного удлинения.

Сплавы с перлитовой структурой представлены с высокими значениями временного сопротивления и со сравнительно низкими показателями относительного удлинения.

По данным ГОСТ 26358, можно определить такие свойства марок ковкого чугуна, как:

  • временное сопротивление разрыву;
  • твёрдость по Бринеллю (НВ);
  • относительное удлинение.

Сфера использования

Применение заготовок из этого чугуна обосновано, с экономической точки зрения. Они значительно дешевле, чем отливки из стали.

Ковкие чугуны широко используются в тракторостроении и автомобилестроении и других сферах промышленности:

  • Для машиностроительных предприятий, как правило, производятся отливки на ферритной основе и совсем немного на перлитной. Но литейно-механические свойства последнего значительно выше.
  • Перлитный ковкий сплав нашел свое применение в сельской промышленности как современный конструкционный сплав и заменитель углеродистой стали. Области использования такого сплава определяют его высокие эксплуатационные, конструкционные и технологические свойства и зачастую лучшее сочетание этих особенностей.

Ключевой особенностью сплава является его применение в производстве как деталей с небольшим весом (например, поршневые кольца), так и крупных элементов с весом до 150 т независимо от толщины стенки детали. Элементы применяются не только в литом виде, но и после необходимых термической и механической обработок.

Яркими образцами использования такого вида материала, заменившего стальные изделия, считаются коленчатые валы для двигателей больших дизельных автомобилей и тракторов. Достоинством применения чугунных изделий является не только низкая цена по сравнению с фасонными стальными деталями, но и еще превосходство их по эксплуатационным свойствам (гашение вибрации, работа при высоких температурах).

Видео: Производства чугуна, стали

Источник: https://promzn.ru/kovka/kovkij-chugun.html

Ковкий чугун. Получение ковкого чугуна. Ковкий чугун применение. | мтомд.инфо

Ковкий чугун получают отжигом белого доэвтектического чугуна. Хорошие свойства у отливок обеспечиваются, если в процессе кристаллизации и охлаждения отливок в форме не происходит процесс графитизации. Чтобы предотвратить графитизацию, чугуны должны иметь пониженное содержание углерода и кремния.

Диаграмма железо-графит. Диаграмма состояния железо-графит.

Ковкие чугуны содержат: углерода – 2,4…3,0 %, кремния – 0,8…1,4 %, марганца – 0,3…1,0 %, фосфора – до 0,2 %, серы – до 0,1 %.

Отжиг ковкого чугуна

Отливки выдерживаются в печи при температуре 950…1000оС в течении 15…20 часов. Происходит разложение цементита:

Fe3C -> Feγ (C) +  C

Классификация чугунов. Маркировка чугунов.

Структура после выдержки состоит из аустенита и графита (углерод отжига). При медленном охлаждении в интервале 760…720oС, происходит разложение цементита, входящего в состав перлита, и структура после отжига состоит из феррита и углерода отжига (получается ферритный ковкий чугун).

При относительно быстром охлаждении (режим б, рисунок) вторая стадия полностью устраняется, и получается перлитный ковкий чугун.

Структура чугуна, отожженного по режиму в, состоит из перлита, феррита и графита отжига (получается феррито-перлитный ковкий чугун).

Отжиг является длительной 70…80 часов и дорогостоящей операцией. В последнее время, в результате усовершенствований, длительность сократилась до 40 часов.

Различают 7 марок ковкого чугуна: три с ферритной (КЧ30–6) и четыре с перлитной (КЧ65–3) основой (ГОСТ 1215).

По механическим и технологическим свойствам ковкий чугун занимает промежуточное положение между серым чугуном и сталью. Недостатком ковкого чугуна по сравнению с высокопрочным (см. Высокопрочный чугун. Высокопрочный чугун с шаровидным графитом. Состав высокопрочного чугуна.) является ограничение толщины стенок для отливки и необходимость отжига.

Отливки из ковкого чугуна применяют для деталей, работающих при ударных и вибрационных нагрузках. Из ферритных чугунов изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы. Из перлитных чугунов, характеризующихся высокой прочностью, достаточной пластичностью, изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.

Механические свойства металлов. Механические свойства сталей. Механические свойства сплавов.

Обозначаются индексом КЧ (высокопрочный чугун) и двумя числми, первое из которых показывает значение предела прочности, умноженное на 10-1, а второе – относительное удлинение — КЧ30-6.

Источник: http://www.mtomd.info/archives/1363

Понятие чугуна, его особенности и нюансы использования

Чугун прочно вошел в нашу жизнь много лет назад. Он относительно легко производится и широко применяется в различных областях. Чтобы иметь четкое представление об этом материале необходимо знать его особенности, минусы, плюсы, химический состав, свойства, структуру чугуна и его сплавов, их производство и область применения.

Читайте также:  Сварочный аппарат ресанта саи-220 - залог качественной сварки

Итак, давайте узнаем, какие железоуглеродистые сплавы называют чугунами.

Понятие

Чугуном называется железоуглеродистый сплав с содержанием углерода, то есть под ним понимается материал, который состоит из сплава железа и углерода. Процентное содержание углерода в чугуне составляет более 2,14%. Последний элемент может входить в чугун в виде графита или цементита.

Данное видео рассказывает об особенностях чугуна:

Различают белый и серый чугун.

  • Углерод в белом чугуне представлен в виде карбида железа. Если переломить его, то можно увидеть белый отлив. В чистом виде белый чугун не используют. Его добавляют к процессу производства ковкого чугуна.
  • На изломе серый чугун имеет серебристый отлив. У этого вида чугуна большая сфера использования. Он хорошо поддается обработке резцами.

Кроме этого, чугуны бывают высокопрочные, ковкие и со специальными свойствами.

  • Высокопрочный чугун используют в целях повышения прочности изделия. Механические свойства такого чугуна позволяют это сделать на отлично. Высокопрочный чугун получают из серого в результате добавление к массе примеси магния.
  • Ковкий чугун — это разновидность серого. Название не означает, что этот чугун легко подвергают ковке. Он обладает повышенными свойствами пластичности. Его получают помощью отжига из белого чугуна.
  • Различают так же половинчатый чугун. В нем некоторая часть углерода находится виде графита, а оставшиеся часть в форме цементита.

Особенные черты

Особенность чугуна кроется в процессе его производства. Средняя температура плавления разных видов чугуна составляет 1200ºС. Это значение на 300 градусов меньше, чем у стали. Связано это с очень высоким содержанием углерода. Углерод и атомы железа имеют между собой не очень тесную связь.

Когда идет процесс выплавки, углерод не может полностью внедриться в решетку железа. В результате чугун принимает свойство хрупкости. Его нельзя использовать для изготовления деталей, на которых будет постоянно действовать нагрузка.

Чугун относится к материалам черной металлургии. Его характеристики часто сравнивают со сталью. Изделия из стали или чугуна широко используются в нашей жизни. Их применение является оправданным. Проведя сравнение характеристик, можно сказать следующее об этих двух материалах:

  • Стоимость чугунных изделий ниже стоимости стальных.
  • Материалы отличаются по цвету. Чугун – это темный матовый материал, а сталь – светлый и блестящий.
  • Чугун легче, чем сталь поддается литью. Но сталь легче сваривается и куется.
  • Чугун менее прочный, чем сталь.
  • По весу чугун легче стали.
  • В стали содержание углерода, выше чем в стали.

Плюсы и минусы

Чугун, как и любой материал, имеет положительные и отрицательные стороны.

К плюсам чугуна относят:

  • Углерод в чугуне может находиться в разном состоянии. Поэтому этот материал может быть двух видов (серый и белый).
  • Определенные виды чугуна обладают повышенной прочностью, поэтому чугун иногда ставят на одну линию со сталью.
  • Чугун может достаточно долго сохранять температуру. То есть при нагреве тепло равномерно распределяется по материалу и остается в нем длительное время.
  • По экологичности чугун является чистым материалом. Поэтому его часто используют для изготовления посуды, в которой впоследствии готовится пища.
  • Чугун стоек в кислотно-щелочной среде.
  • Чугун обладает хорошей гигиеничностью.
  • Материал отличается достаточно долгим сроком службы. Замечено, что чем продолжительнее используется чугун, тем его качество лучше.
  • Чугун – долговечный материал.
  • Чугун – это безвредный материал. Он не способен нанести организму даже маленького вреда.

К минусам чугуна относят:

  • Чугун покроется ржавчиной, если на нем непродолжительное время будет находиться вода.
  • Чугун – дорогостоящий материал. Однако этот минус оправдан. Чугун очень качественный, практичный и надежный. Предметы, изготовленные из него, так же получаются качественными и долговечными.
  • Для серого чугуна характерна маленькая пластичность.
  • Для белого чугуна характерна хрупкость. Он в основном идет на переплавку.

Свойства и характеристики

Чугун обладает следующими свойствами:

  1. Физическими. К этим характеристикам относятся: удельный вес, коэффициент линейного расширения, действительная усадка. Удельный вес меняется в зависимости от содержания в материале углерода.
  2. Тепловыми. Теплопроводность материала принята рассчитывать по правилу смещения. Для твердого чугуна объемная теплоемкость равна 1 кал/см3*оС. Если чугун жидкий, то она равна примерно 1,5 кал/см3*оС.
  3. Механическими. Эти свойства зависят от самой основы, а так же от размеров и формы графита. Самым прочным считается серый чугун с перлитной основой, а самым пластичным — с ферритной основой. Максимальное снижение прочности наблюдается при форме графита «пластинка», а минимальное – при форме «шар».
  4. Гидродинамическими. Вязкость в чугуне меняется в зависимости от наличия марганца и серы. Так же она резко возрастает когда температура чугуна переходит точку начала затвердевания.
  5. Технологическими. Чугун обладает отличными литейными свойствами, стойкости к износу и вибрации.
  6. Химическими. По электродному потенциалу (по мере убывания) структурные составляющие чугуна располагаются в следующем виде: цементит — фосфидная эвтектика — феррит.

Отличия чугуна от стали по химическому составу и свойствам

На свойства чугуна влияют специальные примеси.

  • Так добавление серы позволяет существенно уменьшить жидкотекучесть и снизить тугоплавкость.
  • Добавление фосфора одновременно дает возможность создать изделие сложной формы, но не дает ему повышенной прочности.
  • Примесь в виде кремния делает температуру плавления не такой высокой и значительно улучшает свойства литья. Различное процентное содержания кремния позволяет создать разный чугун: от чисто-белого до ферритного.
  • Марганец ухудшает литейные и технологические свойства, но повышает прочность и твердость.

Помимо названных примесей в состав чугуна могут входить и другие компоненты. Тогда такие материалы будут называться легированными. Наиболее часто в чугун примешивают титан, хром, алюминий, никель и медь.

Далее вы узнаете, какие элементы входят в хим.состав чугуна.

О том, как сварить чугун электросваркой, расскажет видеоролик ниже:

Если рассматривать чугун как структурный материал, то он представляет собой металлическую полость с графитными включениями. Структура чугуна это в основном перлит, ледебурит и пластичный графит. При этом у каждого вида чугуна эти элементы преобладают в разных пропорциях или отсутствуют совсем.

По структуре чугуны бывают:

  • перлитные,
  • ферритные и
  • ферритно-перлитный.

Графит присутствует в этом материале в одной из форм:

  • Шаровидная. Графит приобретает такую форму при добавлении присадки магния. Шаровидная форма графита характерна для высокопрочных чугунов.
  • Пластичная. Графит похож на форму лепестков. В такой виде графит присутствует в обычном чугуне. Этот чугун обладает повышенными свойствами пластичности.
  • Хлопьевидный. Графит приобретает такую форму в результате отжига белого чугуна. Графит в хлопьевидном виде находится у ковкого чугуна.
  • Вермикулярный. Графит названной форма находится у серого чугуна. Она была разработана специально для улучшения пластичных и прочих свойств.

Производство металла

Чугун производят в специальных доменных печах. Основное сырье для получения чугуна – это железная руда. Технологический процесс заключается в восстановлении оксидов железа руды и получении на выходе другого материала – чугуна. Для изготовления чугуна используются следующее топливо: кокс, природный газ и термоантрацит.

После восстановления руды железо имеет твердую форму. Далее его опускают в специальную часть печи (распар), где происходит растворение в железе углерода. На выходе получается жидкий чугун, который опускается в нижнюю часть печи.

Цена на чугун (за 1 кг) зависит от количества углерода в нем, от наличия дополнительных примесей и легирующих компонентов. Примерно цена тонны чугуна будет составлять 8000 рублей.

Чугун распространен во многих сферах.

  • Его используют для производства деталей в машиностроении. В основном из чугуна делают блоки для двигателей и коленчатые валы. Для последних требуется усовершенственный чугун, в который добавляют специальные добавки из графита. Благодаря устойчивости чугуна к трению из него делают тормозные колодки отличного качества.
  • Чугун может бесперебойно работать даже при сильно низких температурах. Поэтому его часто используют в производстве деталей машин, которым придется работать в жестких климатических условиях.
  • Хорошо зарекомендовал себя чугун в металлургической области. Его ценят за относительно небольшую цену и отличные литейные свойства. Изготовленные из чугуна изделия характеризуются отличной прочностью и износостойкостью.
  • Из чугуна делают большое множество сантехнических изделий. К ним можно отнести раковины, батареи, мойки и различные трубы. Особо славятся чугунные ванны и радиаторы отопления. Некоторые из них служат в квартирах по настоящее время, хотя приобретены были много лет назад. Чугунные изделия сохраняют свой первоначальный вид и не нуждаются в реставрации.
  • Благодаря хорошим литейным свойствам из чугуна получают настоящие произведения искусства. Его часто применяют в изготовлении художественных изделий. Например, таких как красивые ажурные ворота или памятники архитектуры.

Выбираете ванну? Не знаете, что лучше, чугунная или стальная? Тогда это видео поможет вам:

Источник: http://stroyres.net/metallicheskie/vidyi/chyornyie/chugun/ponyatie-osobennosti.html

Как формируется структура ковкого чугуна

Комментариев:<\p>

Рейтинг: 17

Чугун — сплав железа с углеродом (от 2,14% до 4-5% углерода), применяемый в промышленности, сантехнике и отоплении, используемый в хозяйственном быту. Чугуны дешевле стали (также сплав железа с углеродом), имеют лучшие литейные свойства, большую тепловую инертность, поэтому широко применяются в различных отраслях машиностроения.

Схема отжига белого чугуна на ковкий.

В зависимости от технологии изготовления в структуре сплава формируются две разные углеродистые формы: графит или цементит. Присутствие того или иного вида углеродного включения определяет вид чугуна и его свойства. Серый чугун содержит свободный углерод (графит), он является литейным. Он характеризуется достаточной пластичностью, позволяющей выполнять его механическую обработку.

Читайте также:  Диоды как основа выпрямительного моста сварочного аппарата

Для белого чугуна, содержащего связанный углерод (цементит), характерна высокая твердость и следующая за ней износостойкость, он хрупок и плохо обрабатывается механическим резанием.

Он является основой для получения ковкого вида, объединяющего в себе свойства прочности и пластичности.

Какая обработка приводит к преобразованию белого чугуна в ковкий и при каких технологических операциях формируется структура ковкого чугуна?

Виды сплавов: белый и серый

Схема микроструктуры ковкого чугуна.

Структура чугуна белого формируется благодаря быстрому охлаждению при затвердевании. При такой технологии растворенный при высоких температурах углерод не успевает выделиться в отдельную структурную составляющую и остается в связанном виде (цементит или карбид железа Fe3C). Его присутствие определяет свойства твердости, износостойкости и хрупкости.

Поскольку скорость охлаждения играет определяющее значение для формирования структуры, важна толщина отливок. При слишком большом сечении (больше 50 — 60 мм) трудно отрегулировать требуемую скорость остывания и получить необходимую безграфитную структуру по всей толщине.

Технология получения серого чугуна предполагает медленное охлаждение при затвердевании плюс дополнительное модифицирование кремнием в размере 1-3% (кремний усиливает графитизацию), что позволяет растворенному графиту выделиться в виде отдельных включений.

Структура чугуна с полученными графитными включениями формирует меньшую (чем при цементите) твердость материала и позволяют обрабатывать его резанием. Форма и дисперсность графита, структура металлической основы определяют свойства и виды материала чугунного сплава: серый (СЧ), высокопрочный (ВЧ).

Источник: https://moyakovka.ru/izdeliya/struktura-kovkogo-chuguna.html

Большая Энциклопедия Нефти и Газа

Cтраница 1

Получение ковкого чугуна осуществляется следующим образом: сначала отливают детали из белого чугуна, после чего их подвергают отжигу в специальных печах. Отжиг изделий может производиться в нейтральной или окислительной среде.  [1]

Дляполучения ковкого чугуна необходимо белый чугун нагреть до 950 – 1000 С и затем после длительной выдержки охладить с малой скоростью до обычной температуры.

Структура ковкого чугуна характеризуется графитом в виде хлопьевидных включений.

Такая форма включений графита ( по сравнению в чешуйчатыми включениями, характерными для серого чугуна) в меньшей степени снижает механические свойства ковкого чугуна.  [2]

Дляполучения ковкого чугуна с высокими механическими свойствами необходимо, чтобы содержание углерода в нем было минимальным. Содержание углерода в белом чугуне колеблется в пределах 2 2 – 3 2 %; при содержании 2 2 % С ухудшаются технологические свойства чугуна.  [4]

Микроструктура ковкого чугуна. хЮО.  [5]

Дляполучения ковких чугунов отливки из белых чугунов подвергают графитизирующему отжигу в отжигательных печах. Ковкие чугуны, так же как и серые, имеют структуру, состоя – щую из стальной основы и выделений графита. Разница только в; том, что в ковких чугунах он выделяется в процессе отжига.  [6]

Дляполучения высококачественного ковкого чугуна необходимо обеспечить низкое содержание углерода и кремния, определяющее структуру основной металлической массы, количество и форму графита в чугуне.  [7]

Дляполучения ковких чугунов повышенной прочности и износоустойчивости применяются специальные режимы термической обработки белого чугуна.  [8]

Процессполучения ковкого чугуна ( при отжиге без окисле ния углерода) состоит в длительном нагревании отливок из белого чугуна до более или менее полного выделения связанного углерода в виде графита.

При отжиге с окислением чугун засыпают при томлении окалиной или рудой.

Содержащийся в руде или окалине кислород диффундирует в горячий металл и окисляет преимущественно углерод чугуна, диффундирующий в свою очередь по направлению к поверхности.  [9]

Процессполучения ковкого чугуна длителен и дорог, этим и объясняется ограниченное распространение его в промышленности.  [10]

Способполучения ковкого чугуна также отличается от способа получения серых ( литейных) чугунов. Ковкий чугун образуется путем длительного нагрева и выдержки белого чугуна при высоких температурах.  [11]

Приполучении ковкого чугуна без окисления углерода отливки из белого чугуна помещают в жароупорные ящики, засыпают песком и медленно нагревают приблизительно до 900 – 1000, выдерживают при этой температуре до 25 час.

Особенно медленное охлаждение ( 10 град / сек) дают при переходе через критическую точку А ( от 740 до 680), для того чтобы весь цементит разложился и структура отожженного чугуна представляла феррит с графитом в форме углерода отжига в крупных скоплениях. Вследствие этого количество выделившегося углерода отжига оказывается сравнительно малым.

Выплавка чугуна с таким низким содержанием углерода может производиться в электрических или пламенных печах, благодаря его относительно высокой температуре плавления.  [12]

Приполучении ковкого чугуна с окислением углерода содержание последнего допускается в исходном белом чугуне в большем количестве – до 3 3 %, так как часть его выгорает.

Во внутренних слоях, в центре наблюдается феррито-перлйтная или даже одна перлитная структура.

Графитных включений при этом способе отжига в чугуне меньше, а тонкостенные мелкие отливки могут даже получить сплошную ферритную основу.  [13]

Основным процессомполучения ковкого чугуна является отжиг, при котором происходит графитизация или обезуглероживание отливок.  [14]

Термическая обработка дляполучения ковкого чугуна типа 4 заключается в полном проведении первой стадии графитизации, после-дующей закалке и отпуске при темпе – wo ратуреббО – 700 С ( фиг.

После проведения первой стадии графитизации устанавли – с вается равновесие аустенит – углерод отжига.

При последующем быстром охлаждении в основной металлической массе происходят превращения, аналогичные превращениям в стали при ее закалке.  [15]

Страницы:      1    2    3    4

Источник: http://www.ngpedia.ru/id288382p1.html

СТРУКТУРА, МЕХАНИЧЕСКИЕ, ЛИТЕЙНЫЕ СВОЙСТВА И СТАНДАРТИЗАЦИЯ ПРОМЫШЛЕННЫХ ЧУГУНОВ

Основной особенностью микроструктуры ковкого чугуна (КЧ), определяющей его свойства, является наличие компактных включений графита, что придает чугуну высокую прочность и пластичность.

Обезуглероженный КЧ является единственным конструкционным чугуном, который хорошо сваривается и может быть использован для получения сварнолитых конструкций. Детали можно соединять дуговой сваркой в среде защитного газа и стыковой сваркой с оплавлением.

Ковкий чугун хорошо поддается запрессовке, расчеканке и легко заполняет зазоры. Отливки из ферритного КЧ можно подвергать холодной правке, а из перлитного – правке в горячем состоянии.

Применяемый в промышленности ковкий чугун получается в результате графитизирующего отжига белого чугуна. Матрица ковкого чугуна может быть как ферритной, так и перлитной. Основные преимущества ковкого чугуна заключаются в однородности его свойств по сечению, практическом отсутствии напряжений в отливках, высоких механических свойствах и очень хорошей обрабатываемости резанием.

Механические свойства ковкого чугуна регламентируются ГОСТ 1215-79 (табл.1.14). В основу маркировки и стандартизации ковкого чугуна положен принцип регламентирования допустимых значений механических свойств при растяженииВ и. Так же, как в сером и высокопрочном, в ковком чугуне твердость зависит главным образом от матрицы, а прочность и пластичность – от матрицы и графита.

В отличие от чугуна с шаровидным графитом, большое влияние оказывает не только форма, но и количество графита. В связи с этим максимальной прочности можно достичь при дисперсном перлите и малом количестве наиболее компактного графита, а наибольшей пластичности – при феррите и таком же графите.

Таблица 1.14 – Механические свойства ковкого чугуна по ГОСТ 1215-79

Кроме свойств, обусловленных ГОСТом, в некоторых случаях представляют интерес и другие свойства, приведенные в табл.1.15-1.17.

Таблица 1.15 – Механические свойства ковкого чугуна при растяжении и сжатии (не вошедшие в ГОСТ 1215-79)

Влияние химического состава на механические свойства ковкого чугуна проявляется в изменении структуры металла и степени легированности феррита и перлита.

Таблица 1.16 – Механические свойства ковкого чугуна при изгибе (не вошедшие в ГОСТ 1215-79)

Таблица 1.17 – Механические свойства ковкого чугуна при кручении и срезе (не вошедшие в ГОСТ 1215-79)

Углерод в ковком чугуне является главным элементом, изменение содержания которого непосредственно определяет механические свойства. Чем выше марка ковкого чугуна, тем ниже должно быть содержание углерода, так как при этом не только уменьшаются количество графита и его размеры, но и улучшается его форма.

Основные физические свойства ковкого чугуна различных типов приведены в табл.1.18.

Таблица 1.18 – Физические свойства ковкого чугуна

Влияние кремния на свойства ковкого чугуна в целом подобно рассмотренному выше его влиянию на свойства чугуна с шаровидным графитом. Повышение содержания кремния в допускаемых пределах увеличивает предел прочности и твердость и понижает коэффициент температурного расширения вследствие легирования феррита.

Марганец сверх количества, необходимого для связывания серы, оказывая тормозящее влияние на графитизацию и легируя феррит, снижает пластичность ковкого чугуна и повышает при этом прочность и твердость.

Сера, способствуя перлитизации структуры, повышает прочность и твердость ковкого чугуна. В КЧ сера, препятствуя ферритизации структуры, улучшает форму графита. Более совершенная форма графита при повышенном содержании серы делает перлитный ковкий чугун с отношением серы к марганцу в пределах 1,0-2,0 благоприятным конструкционным материалом.

Допустимое содержание фосфора в ковком чугуне обычно принимается до 0,12%. При повышении содержания фосфора в ковком чугуне механические свойства изменяются подобно механическим свойствам чугуна с шаровидным графитом. Понижение содержания фосфора вызывает смещение порога хрупкости ковкого чугуна в сторону отрицательных температур.

Действие большинства легирующих элементов на механические свойства ковкого чугуна в целом подобно рассмотренному ранее легированию серого чугуна. При этом следует, конечно же, иметь в виду, что технология производства ковкого чугуна предусматривает отжиг.

Отливки из ковкого чугуна широко используются во многих отраслях промышленности для широкого спектра номенклатуры деталей ответственного назначения: автомобилестроение, тракторное и сельскохозяйственной машиностроение, вагоностроение, судостроение, электропромышленность, станкостроение, санитарно-техническое и строительное оборудование, тяжелое машиностроение и пр. При этом масса отливок может быть от нескольких граммов до 250 кг, минимальная толщина стенок отливки 3 мм, максимальная для обезуглероженного чугуна 25 мм, для графитизированного 60 мм, а в отдельных случаях до 100 мм. Можно с уверенностью утверждать, что, обладая механическими свойствами, близкими к литой стали и ЧШГ, высоким сопротивлением ударным нагрузкам при комнатной и низких температурах, износостойкостью, лучшей, чем ЧШГ, обрабатываемостью резанием и свариваемостью, КЧ сохранит в ближайшие годы свое применение, особенно для мелких отливок, сварных конструкций, несмотря на склонность к образованию трещин и энергоемкость получения готовых отливок.

Читайте также:  Споттер из сварочного аппарата: нюансы собственного производства

  • ← Раздел 1.4
  • Раздел 1.6 →

Источник: http://uas.su/books/2011/pigiron/15/razdel15.php

Термическая обработка чугуна

В машиностроении применяют отливки из серого, ковкого и высокопрочного чугуна. Эти чугуны отличаются от белого чугуна тем, что у них весь углерод или большая его часть находится в сво­бодном состоянии в виде графита (а у белого чугуна весь углерод находится в виде цементита).

Структура указанных чугунов состоит из металлической основы аналогично стали (перлит, феррит) и неметаллических включений — графита.

Серый, ковкий и высокопрочный чугуны отличаются друг от дру­га в основном формой графитовых включений. Это и определяет раз­личие механических свойств указанных чугунов.

У серого чугуна графит (при рассмотрении под микро­скопом) имеет форму пластинок.

Графит обладает низкими механическими свойствами. Он нару­шает сплошность металлической основы и действует как надрез или мелкая трещина. Чем крупнее и прямолинейнее формы графи­товых включений, тем хуже механические свойства серого чугуна.

Основное отличие высокопрочного чу­гуна заключается в том, что графит в нем имеет шаровидную (ок­ругленную) форму. Такая форма графита лучше пластинчатой, так как при этом значительно меньше нарушается сплошность металли­ческой основы.

Ковкий чугун получают длительным отжигом отливок из белого чугуна, в результате которого образуется графит хлопьевид­ной формы — углерод отжига.

Механические свойства рассматриваемых чугунов можно улуч­шить термической обработкой. При этом необходимо помнить, что в чугунах создаются значительные внутренние напряжения, поэто­му нагревать чугунные отливки при термической обработке следу­ет медленно, чтобы избежать образования трещин.

Отливки из чугуна подвергают следующим видам термической обработки.

Низкотемпературный отжиг. Чтобы снять внутренние напря­жения и стабилизовать размеры чугунных отливок из серого чугуна, применяют естественное старение или низкотемпературный от­жиг.

Более старым способом является естественное  старе­ние, при котором отливка после полного охлаждения претерпева­ет длительное вылеживание — от 3—5 месяцев до нескольких лет. Естественное старение применяют в том случае, когда нет требуемо­го оборудования для отжига.

Этот способ в настоящее время почти не применяют; производят главным образом низкотемпературный отжиг.

Для этого отливки после полного затвердевания укладыва­ют в холодную печь (или печь с температурой 100—200° С) и вместе с ней медленно, со скоростью 75—100° С в час нагревают до 500— 550° С, при этой температуре их выдерживают 2—5 часов и охлаж­дают до 200° С со скоростью 30—50° в час, а затем на воздухе.

Графитизирующий отжиг.

При отливке изделий возможен час­тичный отбел серого чугуна с поверхности или даже по всему сечению.

Чтобы устранить отбел и улучшить обрабатываемость чугуна, производится высокотемпературный графитизирующий отжиг с вы­держкой при температуре 900—950° С в течение 1—4 часов и охлаж­дением изделий до 250—300° С вместе с печью, а затем на воздухе.

При таком отжиге в отбеленных участках цементит Fe3Cраспадает­ся на феррит и графит, вследствие чего белый или половинчатый чугун переходит в серый.

Нормализация.

Нормализации подвергают отливки простой фор­мы и небольших сечений. Нормализация проводится при 850—900° С с выдержкой 1—3 часа и последующим охлаждением отливок на воз­духе.

При таком нагреве часть углерода-графита растворяется в аустените; после охлаждения на воздухе металлическая основа полу­чает структуру трооститовидного перлита с более высокой твер­достью и лучшей сопротивляемостью износу.

Для серого чугуна нормализацию применяют сравнительно редко, более широко приме­няют закалку с отпуском.

Закалка.

Повысить прочность серого чугуна можно его закалкой. Она производится с нагревом до 850—900° С и охлаждением в воде. Закалке можно подвергать как перлитные, так и ферритные чугу­ны. Твердость чугуна после закалки достигает НВ 450—500.

В структуре закаленного чугуна имеются мартенсит со значительным количеством остаточного аустенита и выделения графита.

Эффек­тивным методом повышения прочности и износоустойчивости серого чугуна является изотермическая закалка, которая производится ана­логично закалке стали.

Высокопрочные чугуны с шаровидным графитом можно под­вергать пламенной или высокочастотной поверхностной закалке. Чугунные детали после такой обработки имеют высокую поверхностную твердость, вязкую сердцевину и хорошо сопротивляются ударным нагрузкам и истиранию.

Легированные серые чугуны и высокопрочные магниевые чугуны иногда подвергают азотированию.

Поверхностная твердость азоти­рованных чугунных изделий достигает HV600—800° С; такие дета­ли имеют высокую износоустойчивость.

Хорошие результаты дает сульфидирование чугуна; так, например, сульфидированные порш­невые кольца быстро прирабатываются, хорошо сопротивляются ис­тиранию, и срок их службы повышается в несколько раз.

Отпуск.

Чтобы снять закалочные напряжения, после закалки производят отпуск. Детали, предназначенные для работы на истира­ние, проходят низкий отпуск при температуре 200—250° С. Чугун­ные отливки, не работающие на истирание, подвергаются высокому отпуску при 500—600° С.

При отпуске закаленных чугунов твер­дость понижается значительно меньше, чем при отпуске стали.

Это объясняется тем, что в структуре закаленного чугуна большое ко­личество остаточного аустенита, а также тем, что в нем содержится большое количество кремния, который повышает отпускоустойчивость мартенсита.

Для отжига на ковкий чугун применяют белый чугун примерно следующего химического состава: 2,5—3,2% С; 0,6—0,9% Si; 0,3— 0,4% Μη; 0,1-0,2% Ρ и 0,06-0,1% S.

Существуют два способа отжига на ковкий чугун:

графитизирующий  отжиг в нейтральной среде, основанный на разложении цементита на феррит и углерод отжига;

обезуглероживающий  отжиг в окислительной среде, основанный на выжигании углерода.

Отжиг на ковкий чугун по второму способу занимает 5—6 суток, поэтому в настоящее время ковкий чугун получают главным обра­зом графитизацией. Отливки, очищенные от песка и литников, упаковывают в металлические ящики либо укладывают на поддоне, а затем подвергают отжигу в методических, камерных и других от­жигательных печах.

Процесс отжига состоит из двух стадий графитизации. Первая стадия заключается в равномерном нагреве отливок до 950—1000° С свыдержкой 10—25 часов; затем температуру понижают до 750— 720° С при скорости охлаждения 70—100° С в час.

На второй ста­дии при температуре 750—720° С дается выдержка 15—30 часов, затем отливки охлаждаются вместе с печью до 500—400° С и при этой температуре извлекаются на воздух, где охлаждаются с произ­вольной скоростью. При таком ступенчатом отжиге в области темпе­ратур 950—1000° С идет распад (графитизация) цементита.

В ре­зультате отжига по такому режиму структура ковкого чугуна пред­ставляет собой зерна феррита с включениями гнезд углерода отжи­га — графита.

Перлитный ковкий чугун получается в результате неполного от­жига: после графитизации при 950—1000° С чугун охлаждается вместе с печью. Структура перлитного ковкого чугуна состоит из перлита и углерода отжига.

Чтобы повысить вязкость, перлитный ковкий чугун подвергают сфероидизации при температуре 700—750° С, что создает структуру зернистого перлита.

Чтобы ускорить процесс отжига на ковкий чугун, изделия из белого чугуна подвергают закалке, затем проводят графитизацию при 1000—1100° С Ускорение графитизации закаленных чугунов при отжиге объясняется наличием большого количества центров графитизации, образовавшихся при закалке. Это дает возможность сократить время отжига закаленных отливок до 15—7 часов.

Термическая обработка ковкого чугуна.

Чтобы повысить проч­ность и износоустойчивость, ковкие чугуны подвергают нормализа­ции или закалке с отпуском. Нормализация ковкого чугуна произ­водится при 850—900° С с выдержкой при этой температуре 1—1,5 часа и охлаждением на воздухе. Если заготовки имеют повышенную твердость, их следует подвергать высокому отпуску при 650—680° С с выдержкой 1—2 часа.

Иногда ковкий чугун подвергают закалке, чтобы получить более высокую прочность и износоустойчивость за счет снижения плас­тичности.

Температура нагрева под закалку, та же, что и при нор­мализации; охлаждение в воде или масле, а отпуск — в зависимости от требуемой твердости, обычно при температуре 650—680° С.

Быст­рое охлаждение может производиться непосредственно после первой стадии графитизации при достижении температуры 850—880° С с последующим высоким отпуском.

Для ковкого чугуна применяют закалку токами высокой частоты или кислородо-ацетиленовым пламенем; при этом может быть достигнута высокая твердость поверх­ностного слоя при достаточной пластичности основной массы. Ме­тод такой закалки тормозных колодок из ферритного ковкого чугуна заключается в нагреве деталей токами высокой частоты до 1000— 1100° С с выдержкой 1—2 минуты и последующим быстрым ох­лаждением.

Структура закаленного слоя состоит из мартенсита и углеро­да отжига HRC56—60.

Ковкий чугун по сравнению со сталью более дешевый материал; он обладает хорошими механическими свойствами и высокой кор­розионной стойкостью (таблица).

Поэтому детали из ковкого чугу­на широко применяются в сельскохозяйственном машиностроении, автотракторной промышленности, станкостроении (для изготовле­ния зубчатых колес, звеньев цепей, задних мостов, кронштейнов, тормозных колодок и пр.) и в других отраслях народного хо­зяйства.

Таблица

Механические свойства отливок из ковкого чугуна

Группы чугуна

Марка чугуна

Механические свойства

σb    кГ/мм2

[Мн/мм2]

не  менее

δ % (образец диаметром 16 мм), не менее

твердость НВ

Ферритные (черносердеч-ные) чугуны

КЧ 37—12

КЧ 35-10

КЧ 33-8

КЧ 30-6

37 [370]

35 [350]

33 [330]

30 [300]

12

10

8

6

149

149

149

163

Перлитные (белосердечные) чугуны

КЧ 40—3

КЧ 35—4

КЧ 30—3

40 [400]

35 [350]

30 [300]

3

4

3

201

201

201

Примечание. КЧ – означает ковкий чугун, первые две цифры — предел прочнос­ти при растяжении, вторые — относительное удлинение.

Источник:
Остапенко Н.Н.,Крапивницкий Н.Н. Технология металлов. М. Высшая школа,1970г.

Источник: https://markmet.ru/tehnologiya_metallov/termicheskaya-obrabotka-chuguna

Ссылка на основную публикацию
Adblock
detector